Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of PDA/Zn2+ Coatings
2.2. Surface Characterization
2.3. In Vitro Electrochemical Corrosion Degradation Behavior
2.3.1. Potentiodynamic Scanning Polarization Curves and EIS
2.3.2. Immersion Experiment and pH Changes
2.4. Protein Adsorption
2.5. Blood Compatibility
2.5.1. Hemolysis
2.5.2. Platelet Adhesion
2.6. Growth Behaviors of Endothelial Cells
2.6.1. Cell Adhesion and Proliferation
2.6.2. Endothelial Growth Factor (VEGF) Expression
2.6.3. Endothelial Nitric Oxide (NO) Expression
3. Results and Discussion
3.1. Surface Chemical Structure and Morphologies
3.2. Electrochemical Corrosion Degradation Behaviors
3.3. Surface Wettability and Protein Adsorption Behaviors
3.4. Blood Compatibility
3.5. Endothelial Cell Growth Behaviors
4. Conclusions
- (1)
- The Zn2+-loaded PDA coatings displayed superior characteristics with respect to corrosion. With the increase in Zn2+ in the coating, the anticorrosion properties of the Mg alloy were enhanced, and the Mg-PDA/3Zn had the best anticorrosion properties.
- (2)
- The PDA/Zn2+ coatings not only displayed excellent hydrophilic properties and corrosion resistance, but could also release zinc ions, which could provide a favorable surface for selectively promoting albumin adsorption and significantly improving hemocompatibility.
- (3)
- Due to the sustained release of Zn2+ from the PDA/Zn2+ coatings, the endothelial cell adhesion and proliferation, as well as the VEGF and NO expression, were enhanced.
- (4)
- Due to the PDA coating’s capability to further react with bioactive molecules with different functions, its use is expected in further enhancing the corrosion resistance and biocompatibility of the Mg alloys, by immobilizing bioactive molecules on the surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erne, P.; Schier, M.; Resink, T.J. The Road to Bioabsorbable Stents: Reaching Clinical Reality? Cardiovasc Interv. Radiol 2006, 29, 11–16. [Google Scholar] [CrossRef]
- Qi, P.; Yang, Y.; Maitz, F.M.; Huang, N. Current Status of Research and Application in Vascular Stents. Chin. Sci. Bull. 2013, 58, 4362–4370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wang, W.; Zhang, X.; Nune, K.C.; Zhao, Y.; Liu, N.; Misra, R.D.K.; Yang, K.; Tan, L.; Yan, J. The Effect of Different Coatings on Bone Response and Degradation Behavior of Porous Magnesium-Strontium Devices in Segmental Defect Regeneration. Bioact. Mater. 2021, 6, 1765–1776. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Xie, J.; Liu, S.; Fu, W.; Wu, R. Developing a Mg Alloy with Ultrahigh Room Temperature Ductility via Grain Boundary Segregation and Activation of Non-Basal Slips. Int. J. Plast. 2023, 162, 103548. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, C.; Zhao, K. Ultrasonic Welding of AZ31B Magnesium Alloy and Pure Copper: Microstructure, Mechanical Properties and Finite Element Analysis. J. Mater. Res. Technol. 2023, 23, 1273–1284. [Google Scholar] [CrossRef]
- Yang, Y.-X.; Fang, Z.; Liu, Y.-H.; Hou, Y.-C.; Wang, L.-G.; Zhou, Y.-F.; Zhu, S.-J.; Zeng, R.-C.; Zheng, Y.-F.; Guan, S.-K. Biodegradation, Hemocompatibility and Covalent Bonding Mechanism of Electrografting Polyethylacrylate Coating on Mg Alloy for Cardiovascular Stent. J. Mater. Sci. Technol. 2020, 46, 114–126. [Google Scholar] [CrossRef]
- Chen, Y.; Song, Y.; Zhang, S.; Li, J.; Zhao, C.; Zhang, X. Interaction between a High Purity Magnesium Surface and PCL and PLA Coatings during Dynamic Degradation. Biomed. Mater. 2011, 6, 025005. [Google Scholar] [CrossRef]
- Johnson, I.; Akari, K.; Liu, H. Nanostructured Hydroxyapatite/Poly(Lactic- Co -Glycolic Acid) Composite Coating for Controlling Magnesium Degradation in Simulated Body Fluid. Nanotechnology 2013, 24, 375103. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhao, Y.; Yang, Y.; Yang, M.; Hong, Q.; Yang, Z.; Zhang, Q. Immobilization of Bioactive Complex on the Surface of Magnesium Alloy Stent Material to Simultaneously Improve Anticorrosion, Hemocompatibility and Antibacterial Activities. Colloids Surf. B Biointerfaces 2021, 199, 111541. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-L.; Huo, Y.-F.; Li, C.-Y.; Kannan, M.B.; Chen, X.-B.; Guan, S.-K.; Zeng, R.-C.; Ma, Q.-L. Corrosion Resistance of Nanostructured Magnesium Hydroxide Coating on Magnesium Alloy AZ31: Influence of EDTA. Rare Met. 2019, 38, 520–531. [Google Scholar] [CrossRef]
- Guo, Y.; Su, Y.; Jia, S.; Sun, G.; Gu, R.; Zhu, D.; Li, G.; Lian, J. Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties. J. Electrochem. Soc. 2018, 165, C962–C972. [Google Scholar] [CrossRef]
- Cui, L.-Y.; Zeng, R.-C.; Guan, S.-K.; Qi, W.-C.; Zhang, F.; Li, S.-Q.; Han, E.-H. Degradation Mechanism of Micro-Arc Oxidation Coatings on Biodegradable Mg-Ca Alloys: The Influence of Porosity. J. Alloys Compd. 2017, 695, 2464–2476. [Google Scholar] [CrossRef]
- Su, Y.; Cockerill, I.; Wang, Y.; Qin, Y.-X.; Chang, L.; Zheng, Y.; Zhu, D. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019, 37, 428–441. [Google Scholar] [CrossRef]
- O’Neill, E.; Awale, G.; Daneshmandi, L.; Umerah, O.; Lo, K.W.-H. The Roles of Ions on Bone Regeneration. Drug Discov. Today 2018, 23, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Kim, S.; Huh, J. Zinc Plays a Critical Role in the Cardioprotective Effect of Postconditioning by Enhancing the Activation of the RISK Pathway in Rat Hearts. J. Mol. Cell. Cardiol. 2014, 66, 12–17. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Saud, S.N.; Abdul-kadir, M.R. Bi-Layer Nano-TiO2/FHA Composite Coatings on Mg–Zn–Ce Alloy Prepared by Combined Physical Vapour Deposition and Electrochemical Deposition Methods. Vacuum 2014, 110, 127–135. [Google Scholar] [CrossRef]
- Zhang, L.; Mohammed, E.A.A.; Adriaens, A. Synthesis and Electrochemical Behavior of a Magnesium Fluoride-Polydopamine-Stearic Acid Composite Coating on AZ31 Magnesium Alloy. Surf. Coat. Technol. 2016, 307, 56–64. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J. Preparation and Characterization of Polydopamine-Modified Ni/Carbon Nanotubes Friction Composite Coating. Coatings 2019, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, J.; Na, Y.S.; Park, J.; Kim, S.; Singha, K.; Im, G.-I.; Han, D.-K.; Kim, W.J.; Lee, H. Poly(Norepinephrine): Ultrasmooth Material-Independent Surface Chemistry and Nanodepot for Nitric Oxide. Angew. Chem. Int. Ed. 2013, 52, 9187–9191. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, W.; Liu, X.; Zheng, Y.; Cui, Z.; Yang, X.; Pan, H.; Wu, S. Atomic Layer Deposited ZrO2 Nanofilm on Mg-Sr Alloy for Enhanced Corrosion Resistance and Biocompatibility. Acta Biomater. 2017, 58, 515–526. [Google Scholar] [CrossRef]
- Li, H.; Pang, S.; Liu, Y.; Sun, L.; Liaw, P.K.; Zhang, T. Biodegradable Mg–Zn–Ca–Sr Bulk Metallic Glasses with Enhanced Corrosion Performance for Biomedical Applications. Mater. Des. 2015, 67, 9–19. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Li, Q.; Zhou, H.; Wang, G.; Peng, X.; Jin, W.; Yu, Z.; Chu, P.K.; Li, W. Titania-Zinc Phosphate/Nanocrystalline Zinc Composite Coatings for Corrosion Protection of Biomedical WE43 Magnesium Alloy. Surf. Coat. Technol. 2021, 410, 126940. [Google Scholar] [CrossRef]
- Yao, H.-L.; Yi, Z.-H.; Yao, C.; Zhang, M.-X.; Wang, H.-T.; Li, S.-B.; Bai, X.-B.; Chen, Q.-Y.; Ji, G.-C. Improved Corrosion Resistance of AZ91D Magnesium Alloy Coated by Novel Cold-Sprayed Zn-HA/Zn Double-Layer Coatings. Ceram. Int. 2020, 46, 7687–7693. [Google Scholar] [CrossRef]
- Baumgartner, J.N.; Cooper, S.L. Influence of Thrombus Components in Mediatingstaphylococcus Aureus Adhesion to Polyurethane Surfaces. J. Biomed. Mater. Res. 1998, 40, 660–670. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Gu, C.; Sai, Q.; Lei, T.; Williams, J. Antifouling Coatings Fabricated by Laser Cladding. Coatings 2023, 13, 397. [Google Scholar] [CrossRef]
- Kuo, Y.-Y. Hydrothermal Crystallization and Modification of Surface Hydroxyl Groups of Anodized TiO2 Nanotube-Arrays for More Efficient Photoenergy Conversion. Electrochim. Acta 2012. [Google Scholar] [CrossRef]
- Pan, C.; Hu, Y.; Gong, Z.; Yang, Y.; Liu, S.; Quan, L.; Yang, Z.; Wei, Y.; Ye, W. Improved Blood Compatibility and Endothelialization of Titanium Oxide Nanotube Arrays on Titanium Surface by Zinc Doping. ACS Biomater. Sci. Eng. 2020, 6, 2072–2083. [Google Scholar] [CrossRef]
- Gray-Munro, J.E.; Strong, M. The Mechanism of Deposition of Calcium Phosphate Coatings from Solution onto Magnesium Alloy AZ31. J. Biomed. Mater. Res. 2009, 90A, 339–350. [Google Scholar] [CrossRef]
- Roach, P.; Farrar, D.; Perry, C.C. Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. J. Am. Chem. Soc. 2005, 127, 8168–8173. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, H.; Liu, T.; Yang, M.; Zhang, Q.; Pan, C.; Lin, J. Construction of Mussel-Inspired Dopamine–Zn2+ Coating on Titanium Oxide Nanotubes to Improve Hemocompatibility, Cytocompatibility, and Antibacterial Activity. Front. Bioeng. Biotechnol. 2022, 10, 884258. [Google Scholar] [CrossRef] [PubMed]
- Rechendorff, K.; Hovgaard, M.B.; Foss, M.; Zhdanov, V.P.; Besenbacher, F. Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir 2006, 22, 10885–10888. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Li, B.; Yi, N.; Su, B.; Yin, Z.; Zhang, F.; Li, J.; Zhao, C. Improving the Blood Compatibility of Material Surfaces via Biomolecule-Immobilized Mussel-Inspired Coatings. J. Biomed. Mater. Res. 2011, 96A, 38–45. [Google Scholar] [CrossRef]
- Huo, K.; Zhang, X.; Wang, H.; Zhao, L.; Liu, X.; Chu, P.K. Osteogenic Activity and Antibacterial Effects on Titanium Surfaces Modified with Zn-Incorporated Nanotube Arrays. Biomaterials 2013, 34, 3467–3478. [Google Scholar] [CrossRef]
- Li, G.; Yang, P.; Qin, W.; Maitz, M.F.; Zhou, S.; Huang, N. The Effect of Coimmobilizing Heparin and Fibronectin on Titanium on Hemocompatibility and Endothelialization. Biomaterials 2011, 32, 4691–4703. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ruan, Y.C.; Yu, M.K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; et al. Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nat. Med. 2016, 22, 1160–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, B.; Li, Z.; Ren, K.; Jin, L.; Zhang, S.; Chang, H.; Sun, Y.; Ji, J. Electropolymerization of Dopamine for Surface Modification of Complex-Shaped Cardiovascular Stents. Biomaterials 2014, 35, 7679–7689. [Google Scholar] [CrossRef]
- Cortese, M.M.; Suschek, C.V.; Wetzel, W.; Kröncke, K.-D.; Kolb-Bachofen, V. Zinc Protects Endothelial Cells from Hydrogen Peroxide via Nrf2-Dependent Stimulation of Glutathione Biosynthesis. Free Radic. Biol. Med. 2008, 44, 2002–2012. [Google Scholar] [CrossRef]
- Wang, J.-L.; Ren, K.-F.; Chang, H.; Jia, F.; Li, B.-C.; Ji, Y.; Ji, J. Direct Adhesion of Endothelial Cells to Bioinspired Poly(Dopamine) Coating Through Endogenous Fibronectin and Integrin α 5 β 1: Direct Adhesion of Endothelial Cells to Bioinspired Poly(Dopamine). Macromol. Biosci. 2013, 13, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.H.; Ryu, J.; Hong, S.K.; Lee, H.; Park, C.B. General Functionalization Route for Cell Adhesion on Non-Wetting Surfaces. Biomaterials 2010, 31, 2535–2541. [Google Scholar] [CrossRef]
- Krones, C.J.; Klosterhalfen, B.; Butz, N.; Hoelzl, F.; Junge, K.; Stumpf, M.; Peiper, C.; Klinge, U.; Schumpelick, V. Effect of Zinc Pretreatment on Pulmonary Endothelial Cells in Vitro and Pulmonary Function in a Porcine Model of Endotoxemia. J. Surg. Res. 2005, 123, 251–256. [Google Scholar] [CrossRef]
- Orlando, A.; Re, F.; Sesana, S.; Rivolta, I.; Panariti, A.; Brambilla, D.; Nicolas, J.; Couvreur, P.; Andrieux, K.; Masserini, M.; et al. Effect of Nanoparticles Binding ß-Amyloid Peptide on Nitric Oxide Production by Cultured Endothelial Cells and Macrophages. Int. J.Nanomed. 2013, 1335. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, Y.; Singha, K.; Kim, H.W.; Shin, J.H.; Jo, S.; Han, D.-K.; Kim, W.J. NONOates–Polyethylenimine Hydrogel for Controlled Nitric Oxide Release and Cell Proliferation Modulation. Bioconjugate Chem. 2011, 22, 1031–1038. [Google Scholar] [CrossRef]
- Yang, Z.; Tu, Q.; Wang, J.; Huang, N. The Role of Heparin Binding Surfaces in the Direction of Endothelial and Smooth Muscle Cell Fate and Re-Endothelialization. Biomaterials 2012, 33, 6615–6625. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, R.; Kheirouri, S.; Ghodsi, R.; Ojaghi, H. The Effects of Zinc Treatment on Matrix Metalloproteinases: A Systematic Review. J. Trace Elem. Med. Biol. 2019, 56, 107–115. [Google Scholar] [CrossRef] [PubMed]
Samples | Mg | C | O | Zn | N |
---|---|---|---|---|---|
Mg | 47.3 | 6.5 | 46.2 | - | - |
Mg-OH | 9.6 | 31.8 | 58.6 | - | - |
Mg-PDA/1Zn | 9.1 | 49.1 | 31.9 | 3.3 | 6.6 |
Mg-PDA/2Zn | 7.3 | 53.3 | 28.5 | 5.2 | 5.7 |
Mg-PDA/3Zn | 4.5 | 61.2 | 20.9 | 7.8 | 5.6 |
Samples | Ecorr/(V) | icorr/(A·cm−2) | d/(mm/y) |
---|---|---|---|
Mg | −1.55 | 1.42 × 10−5 | 2.8 × 10−1 |
Mg-OH | −1.50 | 1.47 × 10−6 | 7.95 × 10−2 |
Mg-PDA/1Zn | −1.45 | 9.23 × 10−7 | 4.63 × 10−2 |
Mg-PDA/2Zn | −1.47 | 7.79 × 10−7 | 4.30 × 10−2 |
Mg-PDA/3Zn | −1.41 | 4.41 × 10−7 | 2.32 × 10−2 |
Samples | Rs/(Ω·cm2) | CPE1/(µF·cm−2) | Rct/(Ω·cm2) | CPE2/(µF·cm−2) | Rc/(Ω·cm2) | Rp/(Ω·cm2) |
---|---|---|---|---|---|---|
Mg | 70.9 | 5.47 × 10−5 | 1608 | 2.17 × 10−4 | 4292 | 5900 |
Mg-OH | 89.3 | 4.90 × 10−5 | 2568 | 3.14 × 10−4 | 4153 | 6721 |
Mg-PDA/1Zn | 55.3 | 1.61 × 10−5 | 7362 | 1.06 × 10−4 | 8799 | 16,161 |
Mg-PDA/2Zn | 83.6 | 2.36 × 10−5 | 18,095 | - | - | 18,095 |
Mg-PDA/3Zn | 91.5 | 5.94 × 10−7 | 20,374 | 3.14 × 10−5 | 37,048 | 57,422 |
Samples | Mg | C | O | P | Ca |
---|---|---|---|---|---|
Mg | 2.1 | 10.1 | 56.1 | 5.2 | 26.5 |
Mg-OH | 1.5 | 26.8 | 39.2 | 15.0 | 17.5 |
Mg-PDA/Zn | 3.3 | 27.7 | 53.6 | 6.8 | 8.6 |
Mg-PDA/2Zn | 1.5 | 46.8 | 42.8 | 3.7 | 5.2 |
Mg-PDA/3Zn | 1.1 | 37.1 | 44.5 | 7.6 | 9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Liu, X.; Hong, Q.; Ji, Y.; Wang, L.; Zhang, Q.; Chen, J.; Pan, C. Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility. Coatings 2023, 13, 1079. https://doi.org/10.3390/coatings13061079
Meng L, Liu X, Hong Q, Ji Y, Wang L, Zhang Q, Chen J, Pan C. Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility. Coatings. 2023; 13(6):1079. https://doi.org/10.3390/coatings13061079
Chicago/Turabian StyleMeng, Lingjie, Xuhui Liu, Qingxiang Hong, Yan Ji, Lingtao Wang, Qiuyang Zhang, Jie Chen, and Changjiang Pan. 2023. "Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility" Coatings 13, no. 6: 1079. https://doi.org/10.3390/coatings13061079
APA StyleMeng, L., Liu, X., Hong, Q., Ji, Y., Wang, L., Zhang, Q., Chen, J., & Pan, C. (2023). Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility. Coatings, 13(6), 1079. https://doi.org/10.3390/coatings13061079