Printed Graphene Electrode for ITO/MoS2/Graphene Photodiode Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Device Printing
2.3. Characterization
3. Results and Discussion
3.1. Graphene Ink Formalization
3.2. Graphene Ink Characterization
3.3. Inkjet-Printed Electrodes
3.4. Electrical Characterization of Electrodes
3.5. Electrical Characterization of IT0/n-Type MoS2/Graphene Device
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Willis, M. Current Inkjet Technology and Future Directions. In Inkjet Technology for Digital Fabrication; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 343–362. [Google Scholar]
- Hu, G.; Kang, J.; Ng, L.W.T.; Zhu, X.; Howe, R.C.T.; Jones, C.G.; Hersam, M.C.; Hasan, T. Functional Inks and Printing of Two-Dimensional Materials. Chem. Soc. Rev. 2018, 47, 3265–3300. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.S.; Dutta, N.K.; Choudhury, N.R. Graphene Inks for Printed Flexible Electronics: Graphene Dispersions, Ink Formulations, Printing Techniques and Applications. Adv. Colloid Interface Sci. 2018, 261, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Pal, B.; Dey, A.; Sil, S.; Das, P.; Biswas, A.; Ray, P.P. Effect of Graphene on Improved Photosensitivity of MoS2-Graphene Composite Based Schottky Diode. Mater. Res. Bull. 2019, 118, 110507. [Google Scholar] [CrossRef]
- Gupta, S.; Johnston, A.; Khondaker, S. Optoelectronic Properties of MoS2/Graphene Heterostructures Prepared by Dry Transfer for Light-Induced Energy Applications. J. Electron. Mater. 2022, 51, 4257–4269. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zhao, X.; Shen, Q.; Zhao, W.; Tan, Q.; Zhang, N.; Li, P.; Jiao, L.; Qu, X. Sandwich-Like Heterostructures of MoS2/Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2007480. [Google Scholar] [CrossRef]
- Hussain, A.; Abbas, N.; Ali, A. Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors 2022, 10, 103. [Google Scholar] [CrossRef]
- Zichner, R.; Zubkova, T.; Zeiner, C.; Willert, A. Inkjet Printing Processes as an Innovative Manufacturing Method for the Production of Catalytically Coated Membranes (CCM) for Fuel Cells as Well as Electrolyzers. In Proceedings of the FC3—2nd Fuel Cell Conference Chemnitz 2022, Saubere Antriebe, Effizient Produziert; 2022. [Google Scholar]
- Hasan, M.M.; Hossain, M.M. Nanomaterials-Patterned Flexible Electrodes for Wearable Health Monitoring: A Review. J. Mater. Sci. 2021, 56, 14900–14942. [Google Scholar] [CrossRef]
- Kant, T.; Shrivas, K.; Dewangan, K.; Kumar, A.; Jaiswal, N.K.; Deb, M.K.; Pervez, S. Design and Development of Conductive Nanomaterials for Electrochemical Sensors: A Modern Approach. Mater. Today Chem. 2022, 24, 100769. [Google Scholar] [CrossRef]
- Park, M.J.; Wang, C.; Seo, D.H.; Gonzales, R.R.; Matsuyama, H.; Shon, H.K. Inkjet Printed Single Walled Carbon Nanotube as an Interlayer for High Performance Thin Film Composite Nanofiltration Membrane. J. Membr. Sci. 2021, 620, 118901. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent Advances on 3D Printing Graphene-Based Composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Whelan, S.P.; Tehrani, Z.; Peacock, M.; Paulin, J.V.; Guy, O.; Gethin, D. Investigation into the Suitability of Screen Printed Graphene-Melanin PH Sensors for Use in Bacterial Culturing Applications. J. Electroanal. Chem. 2022, 904, 115868. [Google Scholar] [CrossRef]
- Nag, A.; Simorangkir, R.B.V.B.; Gawade, D.R.; Nuthalapati, S.; Buckley, J.L.; O’Flynn, B.; Altinsoy, M.E.; Mukhopadhyay, S.C. Graphene-Based Wearable Temperature Sensors: A Review. Mater. Des. 2022, 221, 110971. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Yu, L.; Li, J.; Zhang, M.; Li, H.; Shi, Y.; Dai, D. Silicon/2D-Material Photodetectors: From near-Infrared to Mid-Infrared. Light Sci. Appl. 2021, 10, 123. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Liu, W.-D.; Gong, Y.-P.; Liu, Q.; Chen, Z.-G. Graphene/Quantum Dot Heterostructure Photodetectors: From Material to Performance. Adv. Opt. Mater. 2022, 10, 2201889. [Google Scholar] [CrossRef]
- Tran, V.-D.; Pammi, S.V.N.; Park, B.-J.; Han, Y.; Jeon, C.; Yoon, S.-G. Transfer-Free Graphene Electrodes for Super-Flexible and Semi-Transparent Perovskite Solar Cells Fabricated under Ambient Air. Nano Energy 2019, 65, 104018. [Google Scholar] [CrossRef]
- Koo, D.; Jung, S.; Seo, J.; Jeong, G.; Choi, Y.; Lee, J.; Lee, S.M.; Cho, Y.; Jeong, M.; Lee, J.; et al. Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule 2020, 4, 1021–1034. [Google Scholar] [CrossRef]
- Chen, D.; Chen, S.; Yue, S.; Lu, B.; Pan, X.; He, H.; Ye, Z. N-ZnO Nanorod Arrays/p-GaN Light-Emitting Diodes with Graphene Transparent Electrode. J. Lumin. 2019, 216, 116719. [Google Scholar] [CrossRef]
- Yang, W.-T.; Guo, L.-Z.; Shih, Y.-T.; Fujii, S.; Honda, S.; Wang, H.-C.; Lin, P.-H.; Lee, K.-Y. Characteristics of Pn Junction Diode Made of Multi-Layer Graphene. Jpn. J. Appl. Phys. 2019, 59, 015003. [Google Scholar] [CrossRef]
- Adetayo, A.E.; Ahmed, T.N.; Zakhidov, A.; Beall, G.W. Improvements of Organic Light-Emitting Diodes Using Graphene as an Emerging and Efficient Transparent Conducting Electrode Material. Adv. Opt. Mater. 2021, 9, 2002102. [Google Scholar] [CrossRef]
- Kim, C.O.; Hwang, S.W.; Kim, S.; Shin, D.H.; Kang, S.S.; Kim, J.M.; Jang, C.W.; Kim, J.H.; Lee, K.W.; Choi, S.-H.; et al. High-Performance Graphene-Quantum-Dot Photodetectors. Sci. Rep. 2014, 4, 5603. [Google Scholar] [CrossRef] [PubMed]
- Monne, M.A.; Grubb, P.M.; Stern, H.; Subbaraman, H.; Chen, R.T.; Chen, M.Y. Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna. Micromachines 2020, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mao, J. The Influence of Different Types of Graphene on the Lithium Titanate Anode Materials of a Lithium Ion Battery. J. Electron. Mater. 2018, 47, 5410–5416. [Google Scholar] [CrossRef]
- Molybdenum Disulfide (MoS2) Pristine Flakes in Solution, 100 mL. Graphene Supermarket. Available online: https://www.graphene-supermarket.com/products/molybdenum-disulfide-mos2-pristine-flakes-in-solution-100-ml (accessed on 10 April 2023).
- Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-concentration Solvent Exfoliation of Graphene. Nano Micro Small 2010, 6, 864–871. [Google Scholar] [CrossRef]
- Pan, K.; Fan, Y.; Leng, T.; Li, J.; Xin, Z.; Zhang, J.; Hao, L.; Gallop, J.; Novoselov, K.S.; Hu, Z. Sustainable Production of Highly Conductive Multilayer Graphene Ink for Wireless Connectivity and IoT Applications. Nat. Commun. 2018, 9, 5197. [Google Scholar] [CrossRef]
- Marsden, A.J.; Papageorgiou, D.G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Electrical Percolation in Graphene–Polymer Composites. 2D Mater. 2018, 5, 032003. [Google Scholar] [CrossRef]
- Finn, D.J.; Lotya, M.; Cunningham, G.; Smith, R.J.; McCloskey, D.; Donegan, J.F.; Coleman, J.N. Inkjet Deposition of Liquid-Exfoliated Graphene and MoS2 Nanosheets for Printed Device Applications. J. Mater. Chem. C 2014, 2, 925–932. [Google Scholar] [CrossRef]
- Santra, S.; Hu, G.; Howe, R.C.T.; De Luca, A.; Ali, S.Z.; Udrea, F.; Gardner, J.W.; Ray, S.K.; Guha, P.K.; Hasan, T. CMOS Integration of Inkjet-Printed Graphene for Humidity Sensing. Sci. Rep. 2015, 5, 17374. [Google Scholar] [CrossRef]
- Choi, J.H.; Seo, J.S.; Jeong, H.E.; Song, K.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Effects of Field-Effect and Schottky Heterostructure on p-Type Graphene-Based Gas Sensor Modified by n-Type In2O3 and Phenylenediamine. Appl. Surf. Sci. 2022, 578, 152025. [Google Scholar] [CrossRef]
- Schmiedova, V.; Pospisil, J.; Kovalenko, A.; Ashcheulov, P.; Fekete, L.; Cubon, T.; Kotrusz, P.; Zmeskal, O.; Weiter, M. Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing. J. Nanomater. 2017, 2017, e3501903. [Google Scholar] [CrossRef]
- Cunningham, G.; Khan, U.; Backes, C.; Hanlon, D.; McCloskey, D.; Donegan, J.F.; Coleman, J.N. Photoconductivity of Solution-Processed MoS2 Films. J. Mater. Chem. C 2013, 1, 6899–6904. [Google Scholar] [CrossRef]
- Qi, S.; Liu, X.; Ma, N.; Xu, H. Construction and Photocatalytic Properties of WS2/MoS2/BiOCl Heterojunction. Chem. Phys. Lett. 2021, 763, 138203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Amri, A.M.; Ng, T.K.; Boukortt, N.E.I.; Ooi, B.S. Printed Graphene Electrode for ITO/MoS2/Graphene Photodiode Application. Coatings 2023, 13, 831. https://doi.org/10.3390/coatings13050831
Al-Amri AM, Ng TK, Boukortt NEI, Ooi BS. Printed Graphene Electrode for ITO/MoS2/Graphene Photodiode Application. Coatings. 2023; 13(5):831. https://doi.org/10.3390/coatings13050831
Chicago/Turabian StyleAl-Amri, Amal M., Tien Khee Ng, Nour El I Boukortt, and Boon S. Ooi. 2023. "Printed Graphene Electrode for ITO/MoS2/Graphene Photodiode Application" Coatings 13, no. 5: 831. https://doi.org/10.3390/coatings13050831
APA StyleAl-Amri, A. M., Ng, T. K., Boukortt, N. E. I., & Ooi, B. S. (2023). Printed Graphene Electrode for ITO/MoS2/Graphene Photodiode Application. Coatings, 13(5), 831. https://doi.org/10.3390/coatings13050831