Combining Non-Thermal Processing Techniques with Edible Coating Materials: An Innovative Approach to Food Preservation
Abstract
:1. Introduction
2. Food Packaging Materials
2.1. Biodegradable Packaging Materials
2.2. Functional Additives for Active Packaging
2.2.1. Preservatives: Antioxidants and Antimicrobials
2.2.2. Light Blockers
2.2.3. Barrier Enhancers
2.2.4. Mechanical Modulators
3. Non-Thermal Methods in Combination with Food Coating Materials
3.1. High Hydrostatic Pressure (HHP)
3.2. Ultrasound
3.3. Pulsed Light
3.4. Irradiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Flynn, K.; Villarreal, B.P.; Barranco, A.; Belc, N.; Björnsdóttir, B.; Fusco, V.; Rainieri, S.; Smaradóttir, S.E.; Smeu, I.; Teixeira, P.; et al. An introduction to current food safety needs. Trends Food Sci. Technol. 2018, 84, 1–3. [Google Scholar] [CrossRef]
- De Moraes, J.O.; Hilton, S.T.; Moraru, C.I. The effect of Pulsed Light and starch films with antimicrobials on Listeria innocua and the quality of sliced cheddar cheese during refrigerated storage. Food Control 2020, 112, 107134. [Google Scholar] [CrossRef]
- Yong, H.I.; Kim, H.-J.; Park, S.; Kim, K.; Choe, W.; Yoo, S.J.; Jo, C. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Res. Int. 2015, 69, 57–63. [Google Scholar] [CrossRef]
- Khezerlou, A.; Jafari, S.M. Nanoencapsulated bioactive components for active food packaging. In Handbook of Food Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 493–532. [Google Scholar]
- Silva, M.M.; Lidon, F. Food preservatives—An overview on applications and side effects. Emir. J. Food Agric. 2016, 28, 366–373. [Google Scholar] [CrossRef]
- Rangan, C.; Barceloux, D.G. Food Additives and Sensitivities. Disease-A-Month 2009, 55, 292–311. [Google Scholar] [CrossRef]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2019, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of essential oils as preservatives in food systems: Challenges and future prospectives—A review. Phytochem. Rev. 2021, 21, 1209–1246. [Google Scholar] [CrossRef]
- Chauhan, O. Combination of Non-thermal Processes and Their Hurdle Effect. In Non-Thermal Processing of Foods; CRC Press: Boca Raton, FL, USA, 2019; pp. 329–372. [Google Scholar]
- Maherani, B.; Harich, M.; Salmieri, S.; Lacroix, M. Antibacterial properties of combined non-thermal treatments based on bioactive edible coating, ozonation, and gamma irradiation on ready-to-eat frozen green peppers: Evaluation of their freshness and sensory qualities. Eur. Food Res. Technol. 2018, 245, 1095–1111. [Google Scholar] [CrossRef]
- Pop, O.L.; Pop, C.R.; Dufrechou, M.; Vodnar, D.C.; Socaci, S.A.; Dulf, F.V.; Minervini, F.; Suharoschi, R. Edible Films and Coatings Functionalization by Probiotic Incorporation: A Review. Polymers 2019, 12, 12. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Poonia, A.; Mishra, A. Edible nanocoatings: Potential food applications, challenges and safety regulations. Nutr. Food Sci. 2021, 52, 497–514. [Google Scholar] [CrossRef]
- Ansorena, M.R.; Ponce, A.G. Coatings in the Postharvest. In Polymers for Agri-Food Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 339–354. [Google Scholar]
- Khezerlou, A.; Zolfaghari, H.; Banihashemi, S.A.; Forghani, S.; Ehsani, A. Plant gums as the functional compounds for edible films and coatings in the food industry: A review. Polym. Adv. Technol. 2021, 32, 2306–2326. [Google Scholar] [CrossRef]
- Tkaczewska, J. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings—A review. Trends Food Sci. Technol. 2020, 106, 298–311. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2020, 14, 209–231. [Google Scholar] [CrossRef]
- Khezerlou, A.; Azizi-Lalabadi, M.; Mousavi, M.M.; Ehsani, A. Incorporation of essential oils with antibiotic properties in edible packaging films. J. Food Bioprocess Eng. 2019, 2, 77–84. [Google Scholar]
- Padhan, S. Hurdle technology: A review article. Trends Biosci. 2018, 11, 3457–3462. [Google Scholar]
- Severino, R.; Vu, K.D.; Donsì, F.; Salmieri, S.; Ferrari, G.; Lacroix, M. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int. J. Food Microbiol. 2014, 191, 82–88. [Google Scholar] [CrossRef]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef]
- Heinrich, V.; Zunabovic, M.; Varzakas, T.; Bergmair, J.; Kneifel, W. Pulsed Light Treatment of Different Food Types with a Special Focus on Meat: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 591–613. [Google Scholar] [CrossRef]
- Pirozzi, A.; Pataro, G.; Donsì, F.; Ferrari, G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. Food Eng. Rev. 2020, 13, 544–569. [Google Scholar] [CrossRef]
- Salinas-Roca, B.; Soliva-Fortuny, R.; Welti-Chanes, J.; Martín-Belloso, O. Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control. 2016, 66, 190–197. [Google Scholar] [CrossRef]
- Forghani, S.; Almasi, H.; Moradi, M. Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. Innov. Food Sci. Emerg. Technol. 2021, 73, 102804. [Google Scholar] [CrossRef]
- Koh, P.C.; Noranizan, M.A.; Karim, R.; Nur Hanani, Z.A. Sensory quality and flavour of alginate coated and repetitive pulsed light treated fresh-cut cantaloupes (Cucumis melo L. Var. Reticulatus Cv. Glamour) during storage. J. Food Sci. Technol. 2019, 56, 2563–2575. [Google Scholar] [PubMed]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Cai, L.; Wang, Y. Physicochemical and Antioxidant Properties Based on Fish Sarcoplasmic Protein/Chitosan Composite Films Containing Ginger Essential Oil Nanoemulsion. Food Bioprocess Technol. 2021, 14, 151–163. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, F.; Yuan, L.; Hu, H.; Yao, X.; Liu, J. Comparison of the physical and functional properties of starch/polyvinyl alcohol films containing anthocyanins and/or betacyanins. Int. J. Biol. Macromol. 2020, 163, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Sholichah, E.; Nugroho, P.; Purwono, B. Preparation and characterization of active film made from arrowroot starch/PVA film and isolated quercetin from shallot (Allium cepa L. var, aggregatum). In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2024, p. 020013. [Google Scholar]
- Mohamad, N.; Mazlan, M.M.; Tawakkal, I.S.M.A.; Talib, R.A.; Kian, L.K.; Fouad, H.; Jawaid, M. Development of active agents filled polylactic acid films for food packaging application. Int. J. Biol. Macromol. 2020, 163, 1451–1457. [Google Scholar] [CrossRef]
- Chen, C.; Zong, L.; Wang, J.; Xie, J. Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr. Polym. 2021, 272, 118448. [Google Scholar] [CrossRef]
- Lukic, I.; Vulic, J.; Ivanovic, J. Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag. Shelf Life 2020, 26, 100578. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocoll. 2010, 24, 49–59. [Google Scholar] [CrossRef]
- Sani, M.A.; Tavassoli, M.; Hamishehkar, H.; McClements, D.J. Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydr. Polym. 2021, 255, 117488. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life 2016, 10, 16–24. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV light blocker—A review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Kwon, S.; Orsuwan, A.; Bumbudsanpharoke, N.; Yoon, C.; Choi, J.; Ko, S. A Short Review of Light Barrier Materials for Food and Beverage Packaging. Korean J. Packag. Sci. Technol. 2018, 24, 141–148. [Google Scholar] [CrossRef]
- Islam, M.T.; Repon, R.; Liman, L.R.; Hossain, M.; Al Mamun, A. Functional modification of cellulose by chitosan and gamma radiation for higher grafting of UV protective natural chromophores. Radiat. Phys. Chem. 2021, 183, 109426. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Yousefi, S.; Heydari, M.; Seyedfatehi, F.; Jafarzadeh, S.; Mohammadi, R.; Rouhi, M.; Garavand, F. Application of Red Cabbage Anthocyanins as pH-Sensitive Pigments in Smart Food Packaging and Sensors. Polymers 2022, 14, 1629. [Google Scholar] [CrossRef]
- Yekta, R.; Mirmoghtadaie, L.; Hosseini, H.; Norouzbeigi, S.; Hosseini, S.M.; Shojaee-Aliabadi, S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int. J. Biol. Macromol. 2020, 158, 327–337. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Tanwar, R.; Gupta, V.; Kumar, P.; Kumar, A.; Singh, S.; Gaikwad, K.K. Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. Int. J. Biol. Macromol. 2021, 185, 451–461. [Google Scholar] [CrossRef]
- Ceballos, R.L.; Ochoa-Yepes, O.; Goyanes, S.; Bernal, C.; Famá, L. Effect of yerba mate extract on the performance of starch films obtained by extrusion and compression molding as active and smart packaging. Carbohydr. Polym. 2020, 244, 116495. [Google Scholar] [CrossRef] [PubMed]
- KKuorwel, K.K.; Cran, M.J.; Orbell, J.D.; Buddhadasa, S.; Bigger, S. Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Compr. Rev. Food Sci. Food Saf. 2015, 14, 411–430. [Google Scholar] [CrossRef]
- Jha, P. Effect of grapefruit seed extract ratios on functional properties of corn starch-chitosan bionanocomposite films for active packaging. Int. J. Biol. Macromol. 2020, 163, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Prog. Org. Coatings 2019, 138, 105383. [Google Scholar] [CrossRef]
- Khaliq, A.; Chughtai MF, J.; Mehmood, T.; Ahsan, S.; Liaqat, A.; Nadeem, M.; Sameed, N.; Saeed, K.; Ur Rehman, J.; Ali, A. High-Pressure Processing; Principle, Applications, Impact, and Future Prospective. In Sustainable Food Processing and Engineering Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–108. [Google Scholar]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2019, 5, 130. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Huang, H.-W.; Hsu, C.-P.; Yang, B.B. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Crit. Rev. Food Sci. Nutr. 2015, 56, 527–540. [Google Scholar] [CrossRef]
- Liepa, M.; Zagorska, J.; Galoburda, R. High-Pressure processing as novel technology in dairy industry: A Review. Res. Rural. Dev. 2016, 1, 76–83. [Google Scholar]
- Rathnakumar, K.; Martínez-Monteagudo, S.I. High-Pressure Processing: Fundamentals, Misconceptions, and Advances. Ref. Modul. Food Sci. 2019. [Google Scholar]
- Diehl, P.; Schauwecker, J.; Mittelmeier, W.; Schmitt, M. High hydrostatic pressure, a novel approach in orthopedic surgical oncology to disinfect bone, tendons and cartilage. Anticancer. Res. 2008, 28, 3877–3883. [Google Scholar]
- Knorr, D.; Jäger, H.; Reineke, K.; Schlüter, O.; Schössler, K. Emerging and New Technologies in Food Science and Technology; International Union of Food Science and Technology (IUFoST): Oakville, ON, Canada, 2010. [Google Scholar]
- Hogan, E.; Kelly, A.L.; Sun, D.-W. 1—High Pressure Processing of Foods: An Overview. In Emerging Technologies for Food Processing; Sun, D.-W., Ed.; Academic Press: London, UK, 2005; pp. 3–32. [Google Scholar]
- Wgiorgis, G.A.; Yildiz, F. Review on high-pressure processing of foods. Cogent Food Agric. 2019, 5, 1568725. [Google Scholar]
- Marcos, B.; Aymerich, T.; Garriga, M. Evaluation of High Pressure Processing as an Additional Hurdle to Control Listeria monocytogenes and Salmonella enterica in Low-Acid Fermented Sausages. J. Food Sci. 2005, 70, m339–m344. [Google Scholar] [CrossRef]
- Morris, C.; Brody, A.L.; Wicker, L. Non-thermal food processing/preservation technologies: A review with packaging implications. Packag. Technol. Sci. Int. J. 2007, 20, 275–286. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López-Caballero, M.E.; Martínez-Bartolomé, M.; de Lacey, A.M.L.; Gómez-Guillen, M.C.; Montero, M.P. The effect of the combined use of high pressure treatment and antimicrobial edible film on the quality of salmon carpaccio. Int. J. Food Microbiol. 2018, 283, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Marchese, E.; Maresca, P.; Pataro, G.; Vu, K.D.; Salmieri, S.; Lacroix, M.; Ferrari, G. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol. Technol. 2015, 106, 21–32. [Google Scholar] [CrossRef]
- Günlü, A.; Sipahioǧlu, S.; Alpas, H. The effect of high hydrostatic pressure on the muscle proteins of rainbow trout (Oncorhynchus mykiss Walbaum) fillets wrapped with chitosan-based edible film during cold storage (4 ± 1° C). High Pressure Res. 2014, 34, 122–132. [Google Scholar] [CrossRef]
- Günlü, A.; Sipahioğlu, S.; Alpas, H. The effect of chitosan-based edible film and high hydrostatic pressure process on the microbiological and chemical quality of rainbow trout (Oncorhynchus mykiss Walbaum) fillets during cold storage (4 ± 1 °C). High Press. Res. 2014, 34, 110–121. [Google Scholar] [CrossRef]
- Albertos, I.; Rico, D.; Diez, A.M.; González-Arnáiz, L.; García-Casas, M.J.; Jaime, I. Effect of edible chitosan/clove oil films and high-pressure processing on the microbiological shelf life of trout fillets. J. Sci. Food Agric. 2014, 95, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Martillanes, S.; Rocha-Pimienta, J.; Llera-Oyola, J.; Gil, M.V.; Ayuso-Yuste, M.C.; García-Parra, J.; Delgado-Adámez, J. Control of Listeria monocytogenes in sliced dry-cured Iberian ham by high pressure processing in combination with an eco-friendly packaging based on chitosan, nisin and phytochemicals from rice bran. Food Control 2021, 124, 107933. [Google Scholar] [CrossRef]
- Marcos, B.; Aymerich, T.; Garriga, M.; Arnau, J. Active packaging containing nisin and high pressure processing as post-processing listericidal treatments for convenience fermented sausages. Food Control 2012, 30, 325–330. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Tajik, H.; Rohani, S.M.R.; Moradi, M.; Hashemi, M.; Aliakbarlu, J. Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage. Radiat. Phys. Chem. 2017, 141, 103–109. [Google Scholar] [CrossRef]
- Abdeldaiem, M. Using of combined treatment between edible coatings containing ethanolic extract of papaya (carica papaya L.) leaves and gamma irradiation for extending shelf-life of minced chicken meat. Am. J. Food Sci. Technol. 2014, 2, 6–16. [Google Scholar]
- Zhang, Q.Q.; Rui, X.; Guo, Y.; He, M.; Xu, X.L.; Dong, M.S. Combined Effect of Polyphenol-Chitosan Coating and Irradiation on the Microbial and Sensory Quality of Carp Fillets. J. Food Sci. 2017, 82, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- Abdeldaiem, M.H.; Mohammad, H.G.; Ramadan, M.F. Improving the Quality of Silver Carp Fish Fillets by Gamma Irradiation and Coatings Containing Rosemary Oil. J. Aquat. Food Prod. Technol. 2018, 27, 568–579. [Google Scholar] [CrossRef]
- Sayed, W.; El-Banna, M.; Ibrahim, M. Improving Minced Meat Quality by Edible Antimicrobial Polymers and Gamma Radiation. Egypt. J. Radiat. Sci. Appl. 2019, 32, 245–253. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, W.; Yang, F.; Jiang, Q.; Xu, Y.; Xia, W. A strategy of ultrasound-assisted processing to improve the performance of bio-based coating preservation for refrigerated carp fillets (Ctenopharyngodon idellus). Food Chem. 2020, 345, 128862. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Tomadoni, B.; Martín-Belloso, O.; Soliva-Fortuny, R. Preservation of fresh-cut apple quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT-Food Sci. Technol. 2015, 64, 1130–1137. [Google Scholar] [CrossRef]
- Moreira, M.R.; Álvarez, M.V.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: A hurdle technology approach. J. Sci. Food Agric. 2017, 97, 261–268. [Google Scholar] [CrossRef]
- Koh, P.C.; Noranizan, M.A.; Hanani, Z.A.N.; Karim, R.; Rosli, S.Z. Application of edible coatings and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biol. Technol. 2017, 129, 64–78. [Google Scholar] [CrossRef]
- Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int. J. Food Microbiol. 2017, 260, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, A.; Del Grosso, V.; Ferrari, G.; Pataro, G.; Donsì, F. Combination of edible coatings containing oregano essential oil nanoemulsion and pulsed light treatments for improving the shelf life of tomatoes. Chem. Eng. Trans. 2021, 87, 61–66. [Google Scholar]
- Bambace, M.F.; Moreira, M.R.; Sánchez-Moreno, C.; De Ancos, B. Effects of combined application of high-pressure processing and active coatings on phenolic compounds and microbiological and physicochemical quality of apple cubes. J. Sci. Food Agric. 2021, 101, 4256–4265. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, M.; Adhikari, B. The Effects of Ultrasound Treatment and Nano-zinc Oxide Coating on the Physiological Activities of Fresh-Cut Kiwifruit. Food Bioprocess Technol. 2013, 7, 126–132. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Chen, H. Effect of Ultrasound Treatment Combined with Carbon Dots Coating on the Microbial and Physicochemical Quality of Fresh-Cut Cucumber. Food Bioprocess Technol. 2020, 13, 648–660. [Google Scholar] [CrossRef]
- Jansrimanee, S.; Lertworasirikul, S. Synergetic effects of ultrasound and sodium alginate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrason. Sonochemistry 2020, 69, 105256. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.A.; Ashraf, S.; Ali, I.; Butt, S.J. Enhancing storage life of bell pepper by UV-C irradiation and edible coatings. Pak. J. Agric. Sci. 2015, 52, 405–413. [Google Scholar]
- Hussain, P.R.; Suradkar, P.; Wani, A.M.; Dar, M.A. Retention of storage quality and post-refrigeration shelf-life extension of plum (Prunus domestica L.) cv. Santa Rosa using combination of carboxymethyl cellulose (CMC) coating and gamma irradiation. Radiat. Phys. Chem. 2015, 107, 136–148. [Google Scholar] [CrossRef]
- Hussain, P.R.; Rather, S.A.; Suradkar, P.; Parveen, S.; Mir, M.A.; Shafi, F. Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit. J. Food Sci. Technol. 2016, 53, 2966–2986. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Xiao, C.; Wang, X.; Lei, Y. Effect of ultraviolet irradiation combined with chitosan coating on preservation of jujube under ambient temperature. LWT 2014, 57, 749–754. [Google Scholar] [CrossRef]
- Severino, R.; Ferrari, G.; Vu, K.D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food Control 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Cingolani, M.C.; Li, L.; Chazot, G.; Salmieri, S.; Horak, C.; Lacroix, M. Effect of γ-irradiation and the use of combined treatments with edible bioactive coating on carrot preservation. Food Packag. Shelf Life 2021, 28, 100635. [Google Scholar] [CrossRef]
- Wambura, P.; Yang, W.W. Ultrasonication and Edible Coating Effects on Lipid Oxidation of Roasted Peanuts. Food Bioprocess Technol. 2009, 3, 620–628. [Google Scholar] [CrossRef]
- Gonçalves, S.M.; de Melo, N.R.; da Silva, J.P.; Chávez, D.W.H.; Gouveia, F.S.; Rosenthal, A. Antimicrobial packaging and high hydrostatic pressure: Combined effect in improving the safety of coalho cheese. Food Sci. Technol. Int. 2020, 27, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Ahari, H.; Nasiri, M. Ultrasonic Technique for Production of Nanoemulsions for Food Packaging Purposes: A Review Study. Coatings 2021, 11, 847. [Google Scholar] [CrossRef]
- Clark, J.P. Commercial Applications of Ultrasound in Foods. Food Technol. 2010, 64, 78. [Google Scholar]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
- Cárcel, J.; García-Pérez, J.; Benedito, J.; Mulet, A. Food process innovation through new technologies: Use of ultrasound. J. Food Eng. 2012, 110, 200–207. [Google Scholar] [CrossRef]
- Bendicho, C.; Lavilla, I. Ultrasound extractions. Encycl. Sep. Sci. 2000, 1448–1454. [Google Scholar]
- García-Pérez, J.V.; Carcel, J.A.; Mulet, A.; Riera, E.; Gallego-Juarez, J.A. Ultrasonic drying for food preservation. In Power Ultrasonics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 875–910. [Google Scholar]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochemistry 2017, 37, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng. 2018, 39, 259–276. [Google Scholar] [CrossRef]
- Khin, M.M.; Zhou, W.; Perera, C.O. A study of the mass transfer in osmotic dehydration of coated potato cubes. J. Food Eng. 2006, 77, 84–95. [Google Scholar] [CrossRef]
- Wambura, P.; Yang, W.; Mwakatage, N.R. Effects of Sonication and Edible Coating Containing Rosemary and Tea Extracts on Reduction of Peanut Lipid Oxidative Rancidity. Food Bioprocess Technol. 2008, 4, 107–115. [Google Scholar] [CrossRef]
- Dehsheikh, F.N.; Dinani, S.T. Coating pretreatment of banana slices using carboxymethyl cellulose in an ultrasonic system before convective drying. Ultrason. Sonochemistry 2018, 52, 401–413. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Barba, F.J.; Ahrné, L.; Xanthakis, E.; Landerslev, M.G.; Orlien, V. Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Mandal, R.; Mohammadi, X.; Wiktor, A.; Singh, A.; Singh, A.P. Applications of Pulsed Light Decontamination Technology in Food Processing: An Overview. Appl. Sci. 2020, 10, 3606. [Google Scholar] [CrossRef]
- John, D.; Ramaswamy, H.S. Pulsed light technology to enhance food safety and quality: A mini-review. Curr. Opin. Food Sci. 2018, 23, 70–79. [Google Scholar] [CrossRef]
- Koh, P.C.; Noranizan, M.A.; Karim, R.; Nur Hanani, Z.A.; Yusof, N.L. Cell wall composition of alginate coated and pulsed light treated fresh-cut cantaloupes (Cucumis melo L. Var. Reticulatus Cv. Glamour) during chilled storage. J. Food Sci. Technol. 2020, 57, 2206–2221. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Ghasempour, Z.; Khorram, S.; Khezerlou, A.; Ehsani, A. Non-thermal techniques: A new approach to removing pesticide residues from fresh products and water. Toxin Rev. 2020, 40, 562–575. [Google Scholar] [CrossRef]
- Oliu, G.O.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Light Treatments for Food Preservation. A Review. Food Bioprocess Technol. 2008, 3, 13–23. [Google Scholar] [CrossRef]
- Pongsri, R.; Aiamla-Or, S.; Srilaong, V.; Uthairatanakij, A.; Jitareerat, P. Impact of electron-beam irradiation combined with shellac coating on the suppression of chlorophyll degradation and water loss of lime fruit during storage. Postharvest Biol. Technol. 2020, 172, 111364. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef]
- Ehlermann, D.A. The early history of food irradiation. Radiat. Phys. Chem. 2016, 129, 10–12. [Google Scholar] [CrossRef]
- Roberts, P.B. Food irradiation: Standards, regulations and world-wide trade. Radiat. Phys. Chem. 2016, 129, 30–34. [Google Scholar] [CrossRef]
- Gu, J.-D.; Wang, Y. Microbial transformation of phthalate esters: Diversity of hydrolytic esterases. Environ. Contam.–Health Risks Bioavailab. Bioremediat. 2013, 313–346. [Google Scholar]
- Wright, J.R.; Sumner, S.S.; Hackney, C.R.; Pierson, M.D.; Zoecklein, B.W. Efficacy of ultraviolet light for reducing Escherichia coli O157: H7 in unpasteurized apple cider. J. Food Prot. 2000, 63, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Bal, E. Influence of chitosan-based coatings with UV irradiation on quality of strawberry fruit during cold storage. Turk. J. Agric. -Food Sci. Technol. 2019, 7, 275–281. [Google Scholar] [CrossRef]
- Lung, H.-M.; Cheng, Y.-C.; Chang, Y.-H.; Huang, H.-W.; Yang, B.B.; Wang, C.-Y. Microbial decontamination of food by electron beam irradiation. Trends Food Sci. Technol. 2015, 44, 66–78. [Google Scholar] [CrossRef]
- Ajibola, O.J. An overview of irradiation as a food preservation technique. Nov. Res. Microbiol. J. 2020, 4, 779–789. [Google Scholar]
- Lester, G.E.; Hallman, G.J.; Pérez, J.A. γ-Irradiation dose: Effects on baby-leaf spinach ascorbic acid, carotenoids, folate, α-tocopherol, and phylloquinone concentrations. J. Agric. Food Chem. 2010, 58, 4901–4906. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Saltaji, S.; Khlifi, M.A.; Salmieri, S.; Vu, K.D.; Lacroix, M. Active edible coating and γ-irradiation as cold combined treatments to assure the safety of broccoli florets (Brassica oleracea L.). Int. J. Food Microbiol. 2017, 241, 30–38. [Google Scholar] [CrossRef]
- Hussain, P.R.; Meena, R.S.; Dar, M.A.; Wani, A.M. Carboxymethyl Cellulose Coating and Low-Dose Gamma Irradiation Improves Storage Quality and Shelf Life of Pear (Pyrus Communis L., Cv. Bartlett/William). J. Food Sci. 2010, 75, M586–M596. [Google Scholar] [CrossRef]
- Shankar, S.; Danneels, F.; Lacroix, M. Coating with alginate containing a mixture of essential oils and citrus extract in combination with ozonation or gamma irradiation increased the shelf life of Merluccius sp. fillets. Food Packag. Shelf Life 2019, 22, 100434. [Google Scholar] [CrossRef]
- Dini, H.; Fallah, A.A.; Bonyadian, M.; Abbasvali, M.; Soleimani, M. Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. Int. J. Biol. Macromol. 2020, 164, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Salem, E.A.; Naweto, M.A.R.; Mahmoud, M.M. Effect of Irradiation and Edible Coating as Safe Environmental Treatments on the Quality and The Marketability of “Anna”Apples During Cold Storage. Arab. J. Nucl. Sci. Appl. 2019, 52, 193–202. [Google Scholar] [CrossRef]
Product | Type of Food | Type of Process | Process Conditions | Polymer | Concentration of Polymer (%w/v) | Active Packaging Materials | Significant Results | Ref |
---|---|---|---|---|---|---|---|---|
Meat | Rainbow trout fillets | High hydrostatic pressure (HHP) | 220 MPa, 15 °C, 5 min | Chitosan | 1.5 | - | Slight change in major bond of sarcoplasmic and myofibrillar muscle fractions | [62] |
Rainbow trout fillets | HHP | 220 MPa, 15 °C, 5 min | Chitosan | 1.5 | - | Extend the shelf life by about 24 days | [63] | |
Trout fillets | HHP | 300 MPa, 12 °C, 10 min | Chitosan | 1.5 | Clove EO | Strong additive antimicrobial effect against mesophilic aerobic and coliform bacteria | [64] | |
Cured Iberian ham | HHP | 600 MPa, 8 min | Chitosan | 2 | Nisin, Rice bran extract | 6 Log CFU/g of L. monocytogenes reduction | [65] | |
Fermented sausages | HHP | 600 MPa, 12 °C, 5 min | PVOH | 13 | Nisin | No extra protection on L. monocytogenes | [66] | |
Chicken | γ-irradiation | 2.5 kGy | Chitosan | 2 0.1 | Grape seed extract | Reduction of bacterial growth Increasing shelf life | [67] | |
Minced chicken thigh | γ-irradiation | 0, 2, 4, and 6 kGy | Pectin | ~3 | Papaya leaf extract | Improving the quality and safety of minced chicken thigh meat Reduced the initial total bacterial count, psychrophilic bacteria, and LAB Prolonged shelf life | [68] | |
Carp fillets | Irradiation | 3 kGy | Chitosan | 2 | Rose polyphenols | Extending the shelf life of fish Preserving sensory quality Preventing bacterial growth, oxidation, and changes in color | [69] | |
Carp fillets | γ-irradiation | 0, 1, 3, and 5 kGy | Calcium caseinate | 4.7 | Rosemary Oil | Increasing in the bacterial inhibitory effect Improving the quality and safety Extending the refrigerated shelf life | [70] | |
Minced meat | γ-irradiation | 3 kGy | CMC Chitosan PC | 3 0.5 3 | ZnO | Improving microbiological, chemical, and sensory quality Increasing the chilling life of minced meat | [71] | |
Carp fillets | Ultrasound | 40 KHz | Chitooligoaccharides | 1 | - | High score of sensory properties for coating and ultrasound Increased shelf life by 11 days 1.40 Log CFU/g of TVC reduction Applying coating with ultrasound led to reduction of TVB-N by 37% | [72] | |
Fruit & vegetable | Fresh-cut Apple | Pulsed light (PL) | 12 J/cm2 | Gellan | 0.5 | Ascorbic acid | Delayed the microbiological spoilage Preserved the sensory quality Decreased softening and browning of apple slices | [73] |
Fresh-cut Apple | PL | 0.4 J/cm2 per pulse | Pectin | 2 | Ascorbic acid | Reduced browning and softening of apple slices Led to 2 log CFU/g decline of microbial papulation Preserved sensory characteristics | [74] | |
Fresh-cut cantaloupe | PL | 0.9 J/cm2 every 48 h up to 26 days | Sodium alginate | 1.86 | - | Compared with PL, alginate coating revealed more effectiveness in preserving high pectin content in cantaloupe slices. PL treatment was more effective than alginate coating in maintaining hemicellulose The combination of PL treatment with alginate manifested a synergistic effect on maintaining the overall cell wall fractions and cell wall integrity of cantaloupes | [75] | |
Fresh-cut cucumber slices | PL | 4, 8, and 12 J/cm2 | Chitosan | 2 | Carvacrol EO | Coating was less effective on E. coli ATCC 26 reductions. PL treatments showed more effectiveness on microbial inactivation The inactivation of E. coli ATCC 26 increased by increasing PL fluences Applying chitosan coating containing 0.08% carvacrol in combination with PL treatment (12 J/cm2) led to reduction of more than 5 log cycles in the E. coli population | [76] | |
Tomatoes | PL | 2, 4, and 8 J/cm 2 | Sodium alginate | 0.5 | Oregano EO | Applying coating containing 0.17% Oregano EO in combination with PL treatment (4 J/cm2) led to reduction in the TVC, yeast, and mold | [77] | |
Apple cubes | HHP | 400 MPa, 35 °C, 5 min | Alginate | 2 | Vanillin | Reduction of E. coli by >5 log Reduced color changes Maintain firmness Increased phloridzin concentration (17%) | [78] | |
Fresh-Cut Kiwifruit | Ultrasound | 40 KHz, 350 W, 10 min | Chitosan | 1 | ZnO | Reduced ethylene, carbon dioxide production, and water loss with combination treatment with 1.2 g/L ZnO | [79] | |
Fresh-Cut Cucumber | Ultrasound | 20 kHz, 400 W, 10 min | Chitosan | 1 | Carbon dots | 5.18 log CFU/g of microbial papulation reduction 3.45 log CFU/g of mold and yeast reduction Reduced respiration rate and weight loss Increased TSS, brix, and ascorbic acid amount Maintain flavor and taste | [80] | |
Pumpkin | Ultrasound | 40 KHz, 150 W | Sodium alginate | 3 | - | Reduced processing time and solid uptake Increased water removal rate Improved texture | [81] | |
Bell pepper | UV-C irradiation | 254 nm, at 8 ± 1 °C, 24 days, 80%–85% RH | Aloe gel cinnamon oil chitosan | (1.5 and 2.5) (0.30 and 0.40) (1 and 1.5) | Cinnamon oil | Improving the quality of fruit Reduction in softening, weight loss, and electrolyte leakage | [82] | |
Plum | γ-irradiation | 1.5 kGy, 25 ± 2 °C, RH 70% and 3 ± 1 °C, RH 80% | CMC | 0.5–1.0 | - | Maintaining the storage quality Delaying the decaying Reduction in yeast and mold count | [83] | |
Cherry | γ-irradiation | 1.2 kGy, 25 ± 2 °C, RH 70% and 3 ± 1 °C, RH 80%, at 28 days | CMC | 0.5–1.0 | - | Maintaining the storage quality Delaying the decaying Delaying the onset of mold growth | [84] | |
Jujube | Ultraviolet irradiation | 253.7 nm, 4, 6, 8, and 10 min | Chitosan | 1, 1.5, 2, and 2.5 | - | Reduction of decay incidence Restraining increase in respiration rate, weight loss, malonaldehyde content, and electrolyte leakage Maintaining the activities of superoxide dismutase, peroxidase, and catalase at higher level Restraining decrease in ascorbic acid and chlorophyll | [85] | |
Green beans | γ-irradiation | 0.25 kGy | Chitosan | 3 | Mandarin EO | Reduction in microbial population and controlling their growth | [86] | |
Carrot | γ-irradiation | 0.5 kGy | Calcium caseinate | 5 | Cinnamon, citronella, lemongrass, and oregano EOs | NO significant effect on weight loss, color, or firmness Decreased the TMF and yeast and mold count after 7 days | [87] | |
Peanut | Ultrasound | 25, 40, and 80 kHz | WPI Zein CMC | 11 15 0.5 | - | Delayed hexanal formation (11% for CMC, 48% for WPI) | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezerlou, A.; Zolfaghari, H.; Forghani, S.; Abedi-Firoozjah, R.; Alizadeh Sani, M.; Negahdari, B.; Jalalvand, M.; Ehsani, A.; McClements, D.J. Combining Non-Thermal Processing Techniques with Edible Coating Materials: An Innovative Approach to Food Preservation. Coatings 2023, 13, 830. https://doi.org/10.3390/coatings13050830
Khezerlou A, Zolfaghari H, Forghani S, Abedi-Firoozjah R, Alizadeh Sani M, Negahdari B, Jalalvand M, Ehsani A, McClements DJ. Combining Non-Thermal Processing Techniques with Edible Coating Materials: An Innovative Approach to Food Preservation. Coatings. 2023; 13(5):830. https://doi.org/10.3390/coatings13050830
Chicago/Turabian StyleKhezerlou, Arezou, Hajar Zolfaghari, Samira Forghani, Reza Abedi-Firoozjah, Mahmood Alizadeh Sani, Babak Negahdari, Masumeh Jalalvand, Ali Ehsani, and David Julian McClements. 2023. "Combining Non-Thermal Processing Techniques with Edible Coating Materials: An Innovative Approach to Food Preservation" Coatings 13, no. 5: 830. https://doi.org/10.3390/coatings13050830
APA StyleKhezerlou, A., Zolfaghari, H., Forghani, S., Abedi-Firoozjah, R., Alizadeh Sani, M., Negahdari, B., Jalalvand, M., Ehsani, A., & McClements, D. J. (2023). Combining Non-Thermal Processing Techniques with Edible Coating Materials: An Innovative Approach to Food Preservation. Coatings, 13(5), 830. https://doi.org/10.3390/coatings13050830