Role of the Alkylation Patterning in the Performance of OTFTs: The Case of Thiophene-Functionalized Triindoles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.2. Instrumentation and Methods
2.3. OTFT Fabrication and Characterization
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Physical Characterization
3.3. Organic Thin-Film Transistors
3.4. Solid-State Characterization
3.4.1. Crystallographic Data
3.4.2. Order and Morphology of the Thin Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Dong, H.; Jiang, L.; Huanli, D. Organic semiconductor crystals. Chem. Soc. Rev. 2017, 47, 422–500. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, Y.; Zhang, J.; Duan, S.; Ji, D.; Yang, H. Recent advances in high-mobility and high-stretchability organic field-effect transistors: From materials, devices to applications. Small Methods 2021, 5, 2100676. [Google Scholar] [CrossRef]
- Peng, H.; He, X.; Jiang, H. Greater than 10 cm2 V−1 s−1: A breakthrough of organic semiconductors for field-effect transistors. Infomat 2021, 3, 613–630. [Google Scholar] [CrossRef]
- Paterson, A.F.; Singh, S.; Fallon, K.J.; Hodsden, T.; Han, Y.; Schroeder, B.C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T.D. Recent progress in high-mobility organic transistors: A reality check. Adv. Mater. 2018, 30, 1801079. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M.I.; Lin, Y.; Campoy-Quiles, M.; et al. Doping approaches for organic semiconductors. Chem. Rev. 2021, 122, 4420–4492. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, S.; Cui, Z.; Li, Z.; Liang, Y.; Zhu, J.; Hu, P.; Zhang, H.-L.; Hu, W. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem. Soc. Rev. 2022, 51, 3071–3122. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Din, I.U.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Alamgeer; Sarker, M.R.; Ali, S.; Ali, S.H.M.; et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings 2022, 12, 1163. [Google Scholar] [CrossRef]
- Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Ueberricke, L.; Mastalerz, M. Triptycene end-capping as strategy in materials chemistry to control crystal packing and increase solubility. Chem. Rec. 2021, 21, 558–573. [Google Scholar] [CrossRef] [PubMed]
- Danac, R.; Leontie, L.; Carlescu, A.; Shova, S.; Tiron, V.; Rusu, G.G.; Iacomi, F.; Gurlui, S.; Șușu, O.; Rusu, G.I. Electric conduction mechanism of some heterocyclic compounds, 4,4′-bipyridine and indolizine derivatives in thin films. Thin Solid Film. 2016, 612, 216–222. [Google Scholar] [CrossRef]
- Zhao, X.; Chaudhry, S.T.; Mei, J. Chapter Five—Heterocyclic Building Blocks for Organic Semiconductors. In Heterocyclic Chemistry in the 21st Century: A Tribute to Alan Katritzky; Advances in Heterocyclic, Chemistry; Scriven, E.F.V., Ramsden, C.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 121, pp. 133–171. [Google Scholar] [CrossRef]
- Takimiya, K.; Osaka, I.; Nakano, M. π-Building Blocks for Organic Electronics: Revaluation of “Inductive” and “Resonance” Effects of π-Electron Deficient Units. Chem. Mater. 2014, 26, 587–593. [Google Scholar] [CrossRef]
- Salman, S.; Sallenave, X.; Bucinskas, A.; Volyniuk, D.; Bezvikonnyi, O.; Andruleviciene, V.; Grazulevicius, J.V.; Sini, G. Effect of methoxy-substitutions on the hole transport properties of carbazole-based compounds: Pros and cons. J. Mater. Chem. C 2021, 9, 9941–9951. [Google Scholar] [CrossRef]
- Vegiraju, S.; Luo, X.-L.; Li, L.-H.; Afraj, S.N.; Lee, C.; Zheng, D.; Hsieh, H.-C.; Lin, C.-C.; Hong, S.-H.; Tsai, H.-C.; et al. Solution processable pseudo n-thienoacenes via intramolecular S···S lock for high performance organic field effect transistors. Chem. Mater. 2020, 32, 1422–1429. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, B.; Suo, J.; Jatautiene, E.; Simokaitiene, J.; Durgaryan, R.; Volyniuk, D.; Hagfeldt, A.; Sini, G.; Grazulevicius, J.V. Additives-free indolo[3,2-b]carbazolebased hole-transporting materials for perovskite solar cells with three yeses: Stability, efficiency, simplicity. Nano Energy 2022, 101, 107618. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.-Y.; Pei, J. Roles of Flexible Chains in Organic Semiconducting Materials. Chem. Mater. 2014, 26, 594–603. [Google Scholar] [CrossRef]
- Mišicák, R.; Novota, M.; Weis, M.; Cigáň, M.; Šiffalovič, P.; Nádaždy, P.; Kožíšek, J.; Kožíšková, J.; Pavúk, M.; Putala, M. Effect of alkyl side chains on properties and organic transistor performance of 2,6-bis(2,2′-bithiophen-5-yl)naphthalene. Synth. Met. 2017, 233, 1–14. [Google Scholar] [CrossRef]
- Reig, M.; Bagdziunas, G.; Ramanavicius, A.; Puigdollers, J.; Velasco, D. Interface engineering and solid-state organization for triindole-based p-type organic thin-film transistors. Phys. Chem. Chem. Phys. 2018, 20, 17889–17898. [Google Scholar] [CrossRef]
- Shaik, B.; Park, J.H.; An, T.K.; Noh, Y.R.; Yoon, S.B.; Park, C.E.; Yoon, Y.J.; Kim, Y.-H.; Lee, S.-G. Small asymmetric anthracene-thiophene compounds as organic thin-film transistors. Tetrahedron 2013, 69, 8191–8198. [Google Scholar] [CrossRef]
- Shaik, B.; Han, J.-H.; Song, D.J.; Kang, H.-M.; Kim, Y.B.; Park, C.E.; Lee, S.-G. Synthesis of donor–acceptor copolymer using benzoselenadiazole as acceptor for OTFT. RSC Adv. 2016, 6, 4070–4076. [Google Scholar] [CrossRef]
- Ong, B.S.; Wu, Y.W.; Li, Y. Organic Semiconductors Based on Polythiophene and Indolo[3,2-b]carbazole. In Organic Electronics: Materials, Manufacturing and Applications; Klauk, H., Ed.; WILEY-VCH: Weinheim, Germany, 2006; pp. 75–107. [Google Scholar] [CrossRef]
- Wex, B.; Kaafarani, B.R. Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications. J. Mater. Chem. C 2017, 5, 8622–8653. [Google Scholar] [CrossRef]
- Grybauskaite-Kaminskiene, G.; Volyniuk, D.; Mimaite, V.; Bezvikonnyi, O.; Bucinskas, A.; Bagdziunas, G.; Grazulevicius, J.V. Aggregation-enhanced emission and thermally activated delayed fluorescence of derivatives of 9-phenyl-9H-carbazole: Effects of methoxy and tert- butyl substituents. Chem. Eur. J. 2018, 24, 9581–9591. [Google Scholar] [CrossRef]
- Górski, K.; Mech-Piskorz, J.; Pietraszkiewicz, M. From truxenes to heterotruxenes: Playing with heteroatoms and the symmetry of molecules. New J. Chem. 2022, 46, 8939–8966. [Google Scholar] [CrossRef]
- Li, X.-C.; Wang, C.-Y.; Lai, W.-Y.; Huangab, W. Triazatruxene-based materials for organic electronics and optoelectronics. J. Mater. Chem. C 2016, 4, 10574–10587. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, Y.-Z.; Song, J.; Gao, X.-P.; Zheng, J.-Y. New donor-π-acceptor type triazatruxene derivatives for highly efficient dye-sensitized solar cells. Org. Lett. 2013, 15, 6034–6037. [Google Scholar] [CrossRef] [PubMed]
- Bulut, I.; Chávez, P.; Mirloup, A.; Huaulmé, Q.; Hébraud, A.; Heinrich, B.; Fall, S.; Méry, S.; Ziessel, R.; Heiser, T.; et al. Thiazole-based scaffolding for high performance solar cells. J. Mater. Chem. C 2016, 4, 4296–4303. [Google Scholar] [CrossRef]
- Bura, T.; Leclerc, N.; Bechara, R.; Lévêque, P.; Heiser, T.; Ziessel, R. Triazatruxene-Diketopyrrolopyrrole Dumbbell-Shaped Molecules as Photoactive Electron Donor for High-Efficiency Solution Processed Organic Solar Cells. Adv. Energy Mater. 2013, 3, 1118–1124. [Google Scholar] [CrossRef]
- Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q.-Q.; Huang, W. Kinked star-shaped fluorene/triazatruxene co-oligomer hybrids with enhanced functional properties for high performance, solution-processed, blue organic light-emitting diodes. Adv. Funct. Mater. 2008, 18, 265–276. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wu, X.; Xu, Y.; Li, H.; Liu, Y.; Tong, H.; Wang, L. Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. J. Mater. Chem. C 2018, 6, 12503–12508. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Lin, Z.-L.; Huang, T.-C.; Lee, J.-W.; Wei, W.-C.; Ko, T.-Y.; Lo, C.-Y.; Chen, D.-G.; Chou, P.-T.; Hung, W.-Y.; et al. New exciplex systems composed of triazatruxene donors and N-heteroarene-cored acceptors. Mater. Chem. Front. 2020, 4, 2029–2039. [Google Scholar] [CrossRef]
- Ruiz, C.; Arrechea-Marcos, I.; Benito-Hernández, A.; Gutierrez-Puebla, E.; Monge, M.A.; Navarrete, J.L.; Ruiz Delgado, M.C.; Ponce Ortiz, R.; Gómez-Lor, B. Solution-processed N-trialkylated triindoles for organic field effect transistors. J. Mater. Chem. C 2018, 6, 50–56. [Google Scholar] [CrossRef]
- Cuadrado, A.; Cuesta, J.; Puigdollers, J.; Velasco, D. Air stable organic semiconductors based on diindolo[3,2-a:3′,2′-c]carbazole. Org. Electron. 2018, 62, 35–42. [Google Scholar] [CrossRef]
- Reig, M.; Puigdollers, J.; Velasco, D. Molecular order of air-stable p-type organic thin-film transistors by tuning the extension of the π-conjugated core: The cases of indolo[3,2-b]carbazole and triindole semiconductors. J. Mater. Chem. C 2015, 3, 506–513. [Google Scholar] [CrossRef]
- Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Thienoacene-Based Organic Semiconductors. Adv. Mater. 2011, 23, 4347–4370. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Yun, C.; Ryu, S.; Ahn, J.; Kim, C.; Seo, S. Characterization of [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives with End-Capping Groups as Solution-Processable Organic Semiconductors for Organic Field-Effect Transistors. Coatings 2023, 13, 181. [Google Scholar] [CrossRef]
- Bujaldón, R.; Puigdollers, J.; Velasco, D. Towards the Bisbenzothienocarbazole Core: A Route of Sulfurated Carbazole Derivatives with Assorted Optoelectronic Properties and Applications. Materials 2021, 14, 3487. [Google Scholar] [CrossRef] [PubMed]
- Borchert, J.W.; Peng, B.; Letzkus, F.; Burghartz, J.N.; Chan, P.K.L.; Zojer, K.; Ludwigs, S.; Klauk, H. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat. Commun. 2019, 10, 1119. [Google Scholar] [CrossRef]
- Choi, E.; Jang, Y.; Ho, D.; Chae, W.; Earmme, T.; Kim, C.; Seo, S. Development of Dithieno[3,2-b:2′,3′-d]thiophene (DTT) Derivatives as Solution-Processable Small Molecular Semiconductors for Organic Thin Film Transistors. Coatings 2021, 11, 1222. [Google Scholar] [CrossRef]
- Sugiyama, M.; Jancke, J.; Uemura, T.; Kondo, M.; Inoue, Y.; Namba, N.; Araki, T.; Fukushima, T.; Sekitani, T. Mobility enhancement of DNTT and BTBT derivative organic thin-film transistors by triptycene molecule modification. Org. Electron. 2021, 96, 106219. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 2020, 8, 3938–3955. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, M.M.; Li, X.; He, M.; Manley, R.; Chang, J.; Zhelev, N.; Mehrotra, K.; Jang, J. Interface Engineering with Polystyrene for High-Performance, Low-Voltage Driven Organic Thin Film Transistor. IEEE Trans. Electron Devices 2020, 67, 1751–1756. [Google Scholar] [CrossRef]
- Kim, D.; Kim, C.A. Ladder-Type Organosilicate Copolymer Gate Dielectric Materials for Organic Thin-Film Transistors. Coatings 2018, 8, 236. [Google Scholar] [CrossRef]
- Feriancová, L.; Kmentová, I.; Micjan, M.; Pavúk, M.; Weis, M.; Putala, M. Synthesis and Effect of the Structure of Bithienyl-Terminated Surfactants for Dielectric Layer Modification in Organic Transistor. Materials 2021, 14, 6345. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liao, J.; Hou, S. Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers. Acta Phys. Chim. Sin. 2021, 37, 1906027. [Google Scholar] [CrossRef]
- Demas, J.N.; Crosby, G.A. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75, 991–1024. [Google Scholar] [CrossRef]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367–2371. [Google Scholar] [CrossRef]
- Ghalgaoui, A.; Shimizu, R.; Hosseinpour, S.; Álvarez-Asencio, R.; McKee, C.; Johnson, C.M.; Rutland, M.W. Monolayer Study by VSFS: In Situ Response to Compression and Shear in a Contact. Langmuir 2014, 30, 3075–3085. [Google Scholar] [CrossRef]
- Song, D.; Wang, H.; Zhu, F.; Yang, J.; Tian, H.; Geng, Y.; Yan, D. Phthalocyanato Tin(IV) Dichloride: An Air-Stable, High-Performance, n-Type Organic Semiconductorwith a High Field-Effect Electron Mobility. Adv. Mater. 2008, 20, 2142–2144. [Google Scholar] [CrossRef]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- McCulloch, I.; Salleo, A.; Chabinyc, M. Avoid the kinks when measuring mobility. Science 2016, 352, 1521–1522. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Cho, K.; Frisbie, C.D.; Sirringhaus, H.; Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 2018, 17, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Gavezzotti, A. Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure. Acta Cryst. 1989, 45, 473–482. [Google Scholar] [CrossRef]
- Campbell, J.E.; Yang, J.; Day, G.M. Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 2017, 5, 7574–7584. [Google Scholar] [CrossRef]
- Mas-Torrent, M.; Rovira, C. Role of Molecular Order and Solid-State Structure in Organic Field-Effect Transistors. Chem. Rev. 2011, 111, 4833–4856. [Google Scholar] [CrossRef] [PubMed]
Solution 2 | Solid State 3 | ||||||
---|---|---|---|---|---|---|---|
Compound | Td (°C) 1 | λabs,max (nm) | λem,max (nm) | Φf 4 | λabs,max (nm) | λem,max (nm) | Φf 4 |
1a | 476 | 317, 344 | 395, 414 | 0.14 | 315, 353 | 432 | 0.02 |
1b | 433 | 318, 344 | 397, 415 | 0.15 | 316, 350 | 424 | 0.03 |
1c | 427 | 318, 344 | 397, 415 | 0.15 | 313, 352 | 424 | 0.03 |
Compound | Egap (eV) 1 | oxEonset (V) 2 | IP (eV) 3 | EA (eV) 4 | IP (eV) 5 |
---|---|---|---|---|---|
1a | 3.22 | 0.18 | 5.58 | 2.36 | 5.18 |
1b | 3.22 | 0.21 | 5.60 | 2.38 | 5.11 |
1c | 3.22 | 0.27 | 5.66 | 2.44 | 5.11 |
Compound | μh (cm2 V−1 s−1) [E (V cm−1)] 1 | μ0 (cm2 V−1 s−1) 2 | α ((cm V−1)1/2) 3 |
---|---|---|---|
1a | 7 × 10−5 [7 × 105] | 4 × 10−6 | 0.0034 |
1b | 1 × 10−3 [2 × 105] | 6 × 10−4 | 0.0017 |
1c | 1 × 10−3 [2 × 105] | 2 × 10−4 | 0.0053 |
SiO2/OTS | SiO2/PS | |||
---|---|---|---|---|
Compound | μh (cm2 V−1 s−1) | Ion/Ioff | μh (cm2 V−1 s−1) | Ion/Ioff |
1a | 7 × 10−5 | 103 | 6 × 10−5 | 102 |
1b | 2 × 10−4 | 104 | 1 × 10−4 | 103 |
1c | 5 × 10−4 | 104 | 2 × 10−4 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujaldón, R.; Cuadrado, A.; Volyniuk, D.; Grazulevicius, J.V.; Puigdollers, J.; Velasco, D. Role of the Alkylation Patterning in the Performance of OTFTs: The Case of Thiophene-Functionalized Triindoles. Coatings 2023, 13, 896. https://doi.org/10.3390/coatings13050896
Bujaldón R, Cuadrado A, Volyniuk D, Grazulevicius JV, Puigdollers J, Velasco D. Role of the Alkylation Patterning in the Performance of OTFTs: The Case of Thiophene-Functionalized Triindoles. Coatings. 2023; 13(5):896. https://doi.org/10.3390/coatings13050896
Chicago/Turabian StyleBujaldón, Roger, Alba Cuadrado, Dmytro Volyniuk, Juozas V. Grazulevicius, Joaquim Puigdollers, and Dolores Velasco. 2023. "Role of the Alkylation Patterning in the Performance of OTFTs: The Case of Thiophene-Functionalized Triindoles" Coatings 13, no. 5: 896. https://doi.org/10.3390/coatings13050896
APA StyleBujaldón, R., Cuadrado, A., Volyniuk, D., Grazulevicius, J. V., Puigdollers, J., & Velasco, D. (2023). Role of the Alkylation Patterning in the Performance of OTFTs: The Case of Thiophene-Functionalized Triindoles. Coatings, 13(5), 896. https://doi.org/10.3390/coatings13050896