Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Oil/Water Separation
2.4. Characterization
3. Results
3.1. Surface Morphology and Wettability
3.2. Formation Mechanism
3.3. Oil/Water Separation
3.4. Durability Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, P.; Huang, L.; Pan, W.; Wu, S.; Feng, X.; Song, J.; Xing, Y. Facile preparation of durable superhydrophobic-superoleophilic mesh using simple chemical oxidation for oil-water separation under harsh conditions. Colloids Surf. A 2021, 624, 126777. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Q.; Xu, J.; Sun, S.; Cheng, Y.; Qiu, F.; Zhang, T. Easily fabricated low-energy consumption joule-heated superhydrophobic foam for fast cleanup of viscous crude oil spills. ACS Appl. Mater. Interfaces 2021, 13, 51652–51660. [Google Scholar] [CrossRef] [PubMed]
- Haridharan, N.; Sundar, D.; Kurrupasamy, L.; Anandan, S.; Liu, C.; Wu, J.J. Oil spills adsorption and cleanup by polymeric materials: A review. Polym. Adv. Technol. 2022, 33, 1353–1384. [Google Scholar] [CrossRef]
- Minh, T.D.; Ncibi, M.C.; Srivastava, V.; Doshi, B.; Sillanpaa, M. Micro/nano-machines for spilled-oil cleanup and recovery: A review. Chemosphere 2021, 271, 129516.1–129516.12. [Google Scholar] [CrossRef]
- Wang, F.; Ma, R.; Zhan, J.; Tian, Y. Superhydrophobic modular cryogel with variable magnetic-actuated motion direction for discrete small-scale oil spill cleanup. J. Harzard. Mater. 2022, 430, 128448. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Han, F.J. Eco-friendly and scratch-resistant hybrid coating on mesh for gravity-driven oil/water separation. J. Clean. Prod. 2019, 241, 118369. [Google Scholar] [CrossRef]
- Taylor, M.; Urquhart, A.J.; Zelzer, M.; Davies, M.C.; Alexander, M.R. Picoliter water contact angle measurement on polymers. Langmuir 2007, 23, 6875–6878. [Google Scholar] [CrossRef]
- Letey, J.; Carrillo, M.L.K.; Pang, X.P. Approaches to characterize the degree of water repellency. J. Hydrol. 2000, 61-65, 231–232. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, L.; Song, J.; Wang, X.; Liu, H. Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 24390–24402. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, S.; Qing, Y.; Luo, S.; Liu, M.; Mater, J. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J. Mater. Chem. A 2016, 4, 14111–14121. [Google Scholar] [CrossRef]
- Ge, J.; Shi, L.; Wang, Y.; Zhao, H.; Yao, H.; Zhu, Y.; Zhang, Y.; Zhu, H.; Wu, H.; Yu, S. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434–440. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Liu, X.; Tao, Z.; Wang, Z.; Yue, R. A robust 3D superhydrophobic sponge for in situ continuous oil removing. J. Mater. Sci. 2019, 54, 1255–1266. [Google Scholar] [CrossRef]
- Chen, N.; Pan, Q. Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano 2013, 7, 6875–6883. [Google Scholar] [CrossRef]
- Li, L.; Hu, T.; Sun, H.; Zhang, J.; Wang, A. Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 18001–18007. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L.; Grishkewich, N.; Tam, K.C.; Yuan, J.; Mao, Z.; Sui, X. CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation. ACS Appl. Mater. Interfaces 2019, 11, 9367–9373. [Google Scholar] [CrossRef]
- Fu, C.; Gu, L.; Zeng, Z.; Xue, Q. One-step transformation of metal meshes to robust superhydrophobic and superoleophilic meshes for highly efficient oil spill cleanup and oil/water separation. ACS Appl. Mater. Interfaces 2020, 12, 1850–1857. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Fan, H.; Wang, Y.; Zhou, C.; Ren, F.; Wu, S.; Li, G.; Hu, Y.; Li, J.; et al. A janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage. Nanoscale 2017, 9, 15796–15803. [Google Scholar] [CrossRef]
- Li, J.; Kang, R.; Tang, X.; She, H.; Yang, Y.; Zha, F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 2016, 8, 7638–7645. [Google Scholar] [CrossRef]
- Baig, U.; Matin, A.; Gondal, M.A.; Zubair, S.M. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J. Clean. Prod. 2019, 208, 904–915. [Google Scholar] [CrossRef]
- Li, D.; Gou, X.; Wu, D.; Guo, Z. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy. Nanoscale 2018, 10, 6695–6703. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl. Mater. Interfaces 2013, 5, 7208–7214. [Google Scholar] [CrossRef] [PubMed]
- Kukkar, D.; Rani, A.; Kumar, V.; Younis, S.A.; Zhang, M.; Lee, S.S.; Tsang, D.C.W.; Kim, K.H.J. Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. Colloid Interface Sci. 2020, 570, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Tang, S.; Chang, X.; Wang, N.; Wang, D.; Liu, T.; Lei, Y.; Zhu, Y. A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications. Appl. Surf. Sci. 2019, 473, 1049–1061. [Google Scholar] [CrossRef]
- Liu, M.; Qing, Y.; Wu, Y.; Liang, J.; Luo, S. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Appl. Surf. Sci. 2015, 330, 332–338. [Google Scholar] [CrossRef]
- Mokoba, T.; Lu, J.; Zhang, T.C.; Ouyang, L.; Yuan, S. Superhydrophobic ODT-TiO2 NW-PDA nanocomposite-coated polyurethane sponge for spilled oil recovery and oil/water separation. Colloids Surf. A 2021, 630, 127541. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, K.; Chen, W.; Zhao, Y.; Xu, Y.; Zhang, C. Durable superhydrophobic and photocatalytic cotton modified by PDMS with TiO2 supported bamboo charcoal nanocomposites. Ind. Crop. Prod. 2021, 171, 113896. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Yu, H.; Lei, H.; Wang, Z.; Zhao, M.; Li, J.; Li, X. Preparation and self-cleaning property of a superhydrophobic coating based on micro–nano integrated TiO2 microspheres. Ceram. Int. 2021, 47, 32456–32459. [Google Scholar] [CrossRef]
- Ma, W.; Ding, Y.; Li, Y.; Gao, S.; Jiang, Z.; Cui, J.; Huang, C.; Fu, G. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification. J. Membr. Sci. 2021, 634, 119402. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Fedchenko, Y.I.; Gyoshev, S.D.; Lazarov, Y.; Chaushev, T.A.; Grakov, T. On the development of ultradurable extremely water-repellent and oleophobic soot-based fabrics with direct relevance to sperm cryopreservation. ACS Appl. Bio Mater. 2022, 5, 3519–3529. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.S.; Xiong, W.; Wang, M.; Fan, L.; Rabiee-Golgir, H.; Jiang, L.; Hou, W.; Huang, X.; Jiang, L.; et al. Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl. Mater. Interfaces 2014, 6, 5924–5929. [Google Scholar] [CrossRef]
- Cao, H.; Fu, J.; Liu, Y.; Chen, S. Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation. Colloids Surf. A 2018, 537, 294–302. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Uwaezuoke, O.J.; Elella, M.H.A. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere 2022, 294, 133644. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Hassain, S.Z.; Subhani, T.; Hussain, I.; Rehman, H. Mechanically robust superhydrophobic coating from sawdust particles and carbon soot for oil/water separation. Colloids Surf. A 2018, 539, 391–398. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Ouyang, L.; Li, J.; Xie, G.; Yan, Y.; Weng, C. One-step preparation of robust superhydrophobic foam for oil/water separation by pulse electrodeposition. Langmuir 2021, 37, 7043–7054. [Google Scholar] [CrossRef]
- Hidarian, M.; Hashemian, S. Synthesize and characterization of sawdust/MnFe2O4 nano composite for removal of indigo carmine from aqueous solutions. Orient. J. Chem. 2014, 30, 1753–1762. [Google Scholar]
- Ling, C.; Guo, L. A novel, eco-friendly and durable flame-retardant cottonbased hyperbranched polyester derivative. Cellulose 2020, 27, 2357–2368. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, H.; Mao, P.; Wang, Y.; Ge, Y. Superhydrophobic alumina surface based on stearic acid modification. Appl. Surf. Sci. 2011, 257, 3959–3963. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, Q.; Quan, X.; Feng, W.; Wang, Q. Fluorine-free and gydrophobic hexadecyltrimethoxysilane-TiO2 coated mesh for gravity-driven oil/water separation. Colloids Surf. A 2020, 586, 124189. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Zhan, B.; Kaya, C.; Stegmaier, T.; Han, Z.; Ren, L. Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation. J. Bionic Eng. 2017, 14, 497–505. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Ma, Y.; Du, X.; Shi, Y.; Li, J.; Shi, J. Fabrication of superwetting, antimicrobial and conductive fibrous membranes for removing/collecting oil contaminants. RSC Adv. 2020, 10, 21636–21642. [Google Scholar] [CrossRef]
- Xie, A.; Wang, B.; Chen, X.; Wang, Y.; Wang, Y.; Zhu, X.; Xing, T.; Chen, G. Facile fabrication of superhydrophobic polyester fabric based on rapid oxidation polymerization of dopamine for oil–water separation. RSC Adv. 2021, 11, 26992–27002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, L.; Gong, X. Design and fabrication of polydopamine based superhydrophobic fabrics for efficient oil–water separation. Soft Matter 2021, 17, 6542–6551. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhu, J.; Niu, X.; Wang, J.; Dong, G.; Shan, M.; Zhang, B.; Matsuyama, H.; Zhang, Y. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep. Purif. Technol. 2022, 280, 119920. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, Z.; Chen, H.; Xiang, Q.; Wang, Q.; Xie, C.; Liu, Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. J. Hazard. Mater. 2022, 434, 128833. [Google Scholar] [CrossRef]
- Gao, L.; Lu, Y.; Zhan, X.; Li, J.; Sun, Q. A robust, anti-acid, and high-temperature–humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane. Surf. Coat. Technol. 2014, 262, 33–39. [Google Scholar] [CrossRef]
- Barthwal, S.; Barthwal, S.; Singh, B.; Singh, N.B. Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids Surf. A 2020, 597, 124776. [Google Scholar] [CrossRef]
Substrate | Preparation | Coating | Oil | η (%) | Reference |
---|---|---|---|---|---|
carbon fiber | nickel electroplating | Ni/fluoroalkylsilane | dichloromethane | 99.1 | [2] |
fabric | in situ redox-oxidation polymerization | polypyrrole/Ag/hexane | chloroform | 96.8 | [40] |
fabric | in situ polymerization | polydopamine/Fe/hexad-ecyltrimethoxysilane | tetrachloromethane | 99.0 | [41] |
fabric | sol–gel method | polydopamine/SiO2/PDMS | dichloromethane | 95.0 | [42] |
sponge | interfacial polymerization | halloysite nanotubes/SiO2/ODTMS | chloroform | 99.9 | [43] |
sponge | sol–gel method | SiO2/PFDS | chloroform | 98.7 | [44] |
sponge | liquid-phase deposition | TiO2/stearic acid | tetrachloromethane | 99.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Tang, L.; Zhao, X.; Xu, G.; Fan, W. Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation. Coatings 2023, 13, 925. https://doi.org/10.3390/coatings13050925
Fan S, Tang L, Zhao X, Xu G, Fan W. Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation. Coatings. 2023; 13(5):925. https://doi.org/10.3390/coatings13050925
Chicago/Turabian StyleFan, Shumin, Lulu Tang, Xin Zhao, Guangri Xu, and Wenxiu Fan. 2023. "Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation" Coatings 13, no. 5: 925. https://doi.org/10.3390/coatings13050925
APA StyleFan, S., Tang, L., Zhao, X., Xu, G., & Fan, W. (2023). Facile Preparation of Durable Superhydrophobic Coating by Liquid-Phase Deposition for Versatile Oil/Water Separation. Coatings, 13(5), 925. https://doi.org/10.3390/coatings13050925