Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Phosphor
2.2. Preparation of Long Persistent Luminescent Coating
2.3. Characterization Techniques
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Tanabe, S. Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. J. Lumin. 2018, 205, 581–620. [Google Scholar] [CrossRef]
- Hölsä, J. Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence. Electrochem. Soc. Interface 2009, 18, 42–45. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2 +, Dy3 +. J. Electrochem. Soc. 1996, 143, 2670. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Y.; Chen, L.; Ju, G.; Wu, H.; Mu, Z.; He, M.; Xue, F. Luminescent properties of a green long persistent phosphor Li2MgGeO4:Mn2+. Opt. Mater. Express 2016, 6, 929–937. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, X.; Cui, R.; Deng, C. Improvable luminescent properties by adjusting silicon-calcium stoichiometric ratio in long afterglow phosphors Ca1.94MgSi2O7:Eu2+0.01,Dy3+0.05. J. Alloys Compd. 2016, 658, 898–903. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Y.; Lv, Y.; Ju, G.; Liu, D.; Chen, L.; Li, Z.Z.; Hu, Y. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+,Ho3+ and photostimulable luminescence for optical information storage. J. Mater. Chem. C 2018, 6, 6058–6067. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Meng, Y.; Zhang, H. Long afterglow green luminescence of Tb3+ ion in Ga4GeO8 through persistent energy transfer from host to Tb3+. J. Lumin. 2021, 237, 118149. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Peng, L.; Han, T.; Liu, C.; Zhou, Z.; Qiang, Q.P.; Shen, F.J.; Wang, J.; Liu, B. Long persistent luminescence property of green emitting Sr3Ga4O9:Tb3+ phosphor for anti-counterfeiting application. J. Lumin. 2022, 250, 119066. [Google Scholar] [CrossRef]
- He, X.; Zhang, H.; Xie, F.; Tao, C.; Xu, H.; Zhong, S. Enhanced afterglow performance of Zn2SiO4:Mn2+ by Pr3+ doping and mechanism. Ceram. Int. 2022, 13, 19358–19366. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Rodriguez, M.Á.; Fernandez, J.F. Long Lasting Phosphors: SrAl2O4: Eu, Dy as the Most Studied Material. Renew. Sust. Energ. Rev. 2018, 81, 2759–2770. [Google Scholar] [CrossRef]
- Liepina, V.; Millers, D.; Smits, K. Tunneling Luminescence in Long Lasting Afterglow of SrAl2O4: Eu, Dy. J. Lumin. 2017, 185, 151–154. [Google Scholar] [CrossRef]
- Qiu, Z.F.; Zhou, Y.Y.; Lv, M.K.; Zhang, A.Y.; Ma, Q. Combustion Synthesis of Long-Persistent Luminescent MAl2O4: Eu2+, R3+ (M= Sr, Ba, Ca, R= Dy, Nd and La) Nanoparticles and Luminescence Mechanism Research. Acta Mater. 2007, 55, 2615–2620. [Google Scholar] [CrossRef]
- Luo, X.H.; Cao, W.H.; Xiao, Z.H. Investigation on the Distribution of Rare Earth Ions in Strontium Aluminate Phosphors. J. Alloys Compd. 2006, 416, 250–255. [Google Scholar] [CrossRef]
- Cordoncillo, E.; Julian-Lopez, B.; Martínez, M.; Sanjuán, M.L.; Escribano, P. New Insights in the Structure-Luminescence Relationship of Eu: SrAl2O4. J. Alloys Compd. 2009, 484, 693–697. [Google Scholar] [CrossRef]
- Peng, T.Y.; Yang, H.P.; Pu, X.L.; Hu, B.; Jiang, Z.C.; Yan, C.H. Combustion Synthesis and Photoluminescence of SrAl2O4: Eu, Dy Phosphor Nanoparticles. Mater. Lett. 2004, 58, 352–356. [Google Scholar] [CrossRef]
- Peng, T.Y.; Li, H.J.; Yang, H.P.; Yan, C.H. Synthesis of SrAl2O4: Eu, Dy Phosphor Nanometer Powders by Sol-Gel Processes and Its Optical Properties. Mater. Chem. Phys. 2004, 85, 68–72. [Google Scholar] [CrossRef]
- Zang, L.X.; Shao, W.H.; Kwon, M.S.; Zhang, Z.G.; Kim, J. Photoresponsive Luminescence Switching of Metal-Free Organic Phosphors Doped Polymer Matrices. Adv. Opt. Mater. 2020, 8, 2000654. [Google Scholar] [CrossRef]
- Poelman, D.; Van der Heggen, D.; Du, J.R.; Cosaert, E.; Smet, P. Persistent Phosphors for the Future: Fit for the Right Application. J. Appl. Phys. 2020, 128, 240903. [Google Scholar] [CrossRef]
- Chiatti, C.; Fabiani, C.; Pisello, A.L. Long Persistent Luminescence: A Road Map Toward Promising Future Developments in Energy and Environmental Science. Annu. Rev. Mater. Sci. 2021, 51, 409–433. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X.D. Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Wiese, A.; Washington, T.; Tao, B.; Weiss, W.J. Assessing performance of glow-in-the-dark concrete. Transp. Res. Record. 2015, 2508, 31–38. [Google Scholar] [CrossRef]
- Tian, Y.X.; Ma, B.; Liu, F.W.; Li, N.; Zhou, X.Y. Thermoregulation effect analysis of microencapsulated phase change thermoregulation agent for asphalt pavement. Constr. Build. Mater. 2019, 221, 139–150. [Google Scholar] [CrossRef]
- Gallego, J.; del Val, M.A.; Contreras, V.; Páez, A. Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 2013, 42, 1–4. [Google Scholar] [CrossRef]
- Zhang, M.; Li, F.; Jiang, S.; Lin, Y.C.; Chen, F.; Zhao, X.; Shen, Y. CaAl2O4: Eu2+, Nd3+ Anti-Corrosive Coating and Its Afterglow-Catalytic Process. Opt. Mater. 2021, 116, 111049. [Google Scholar] [CrossRef]
- Bispo-Jr, A.G.; Lima, S.A.; Carlos, L.D.; Ferreira, R.A.; Pires, A.M. Phosphor-Based Green-Emitting Coatings for Circadian Lighting. J. Lumin. 2020, 224, 117298. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, Z.; Qi, Y. Effect of the Properties of Long Afterglow Phosphors on the Antifouling Performance of Silicone Fouling-Release Coating. Prog. Org. Coat. 2022, 170, 106965. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Al-nami, S.Y.; Alkhamis, K.; Al-Ahmed, Z.A.; Binyaseen, A.M.; Khalifa, M.E.; El-Metwaly, N.M. Simple Preparation of Long-Persistent Luminescent Paint with Superhydrophobic Anticorrosion Efficiency from Cellulose Nanocrystals and an Acrylic Emulsion. Ceram. Int. 2022, 48, 6363–6371. [Google Scholar] [CrossRef]
- Thejo Kalyani, N.; Jain, A.; Dhoble, S.J. Persistent Phosphors for Luminous Paints: A Review. Luminescence 2022, 37, 524–542. [Google Scholar] [CrossRef]
- Dutczak, D.; Jüstel, T.; Ronda, C.; Meijerink, A. Eu2+ Luminescence in Strontium Aluminates. Phys. Chem. Chem. Phys. 2015, 17, 15236–15249. [Google Scholar] [CrossRef] [Green Version]
- Korthout, K.; Van den Eeckhout, K.; Botterman, J.; Nikitenko, S.; Poelman, D.; Smet, P.F. Luminescence and X-ray Absorption Measurements of Persistent SrAl2O4: Eu, Dy Powders: Evidence for Valence State Changes. Phys. Rev. B 2011, 84, 085140. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.F.; Tang, Q.; Zhang, C.X.; Huang, D.X.; Su, Q. Thermoluminescent Properties of Eu2+ and RE3+ Co-doped Phosphors CaGa2S4:Eu2+,RE3+ (RE=Ln, Excluding Pm, Eu and Lu). J. Lumin. 2007, 126, 333–338. [Google Scholar] [CrossRef]
- Van den Eeckhout, K.; Bos, A.J.; Poelman, D.; Smet, P.F. Revealing Trap Depth Distributions in Persistent Phosphors. Phys. Rev. B 2013, 87, 045126. [Google Scholar] [CrossRef] [Green Version]
- Poulose, A.M.; Shaikh, H.; Anis, A.; Alhamidi, A.; Kumar, N.S.; Elnour, A.Y.; Al-Zahrani, S.M. Long persistent luminescent hdpe composites with strontium aluminate and their phosphorescence, thermal, mechanical, and rheological characteristics. Materials 2022, 15, 1142. [Google Scholar] [CrossRef]
- Poulose, A.M.; Anis, A.; Shaikh, H.; Alhamidi, A.; Siva Kumar, N.; Elnour, A.Y.; Al-Zahrani, S.M. Strontium aluminate-based long afterglow pp composites: Phosphorescence, thermal, and mechanical characteristics. Polymers 2021, 13, 1373. [Google Scholar] [CrossRef]
- Wang, L.; Shang, Z.; Shi, M.; Cao, P.; Yang, B.; Zou, J. Preparing and testing the reliability of long-afterglow SrAl2O4:Eu2+,Dy3+ phosphor flexible films for temperature sensing. RSC Adv. 2020, 10, 11418–11425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.D.; Chen, C.C.; Lin, C.F. Influence of sol–gel-derived ZnO:Al coating on luminescent properties of Y2O3:Eu3+ phosphor. J. Sol-Gel Sci. Technol. 2019, 92, 562–574. [Google Scholar] [CrossRef]
- Shi, X.; Dou, R.; Ma, T.; Liu, W.; Lu, X.; Shea, K.J.; Song, J.L.; Jiang, L. Bioinspired lotus-like self-illuminous coating. ACS Appl. Mater. Interfaces 2015, 7, 18424–18428. [Google Scholar] [CrossRef]
- Wan, M.; Jiang, X.; Nie, J.; Cao, Q.; Zheng, W.; Dong, X.; Fan, Z.H.; Zhou, W. Phosphor powders-incorporated polylactic acid polymeric composite used as 3D printing filaments with green luminescence properties. J. Appl. Polym. Sci. 2019, 137, 48644. [Google Scholar] [CrossRef]
- Perez, C.; Collazo, A.; Izquierdo, M.; Merino, P.; Novoa, X.R. Characterisation of the Barrier Properties of Different Paint Systems: Part II. Non-Ideal Diffusion and Water Uptake Kinetics. Prog. Org. Coat. 1999, 37, 169–177. [Google Scholar] [CrossRef]
- Perez, C.; Collazo, A.; Izquierdo, M.; Merino, P.; Novoa, X.R. Characterisation of the Barrier Properties of Different Paint Systems: Part I. Experimental Set-Up and Ideal Fickian Diffusion. Prog. Org. Coat. 1999, 36, 102–108. [Google Scholar] [CrossRef]
- Zhang, J.T.; Hu, J.M.; Zhang, J.Q.; Cao, C.N. Studies of Impedance Models and Water Transport Behaviors of Polypropylene Coated Metals in NaCl Solution. Prog. Org. Coat. 2004, 49, 293–301. [Google Scholar] [CrossRef]
- Zhang, J.T.; Hu, J.M.; Zhang, J.Q.; Cao, C.N. Studies of Water Transport Behavior and Impedance Models of Epoxy-Coated Metals in NaCl Solution by EIS. Prog. Org. Coat. 2004, 51, 145–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Li, X.; Bai, Y.; Tang, S.; Li, P.; Zhu, Q. Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways. Coatings 2023, 13, 1050. https://doi.org/10.3390/coatings13061050
Zheng M, Li X, Bai Y, Tang S, Li P, Zhu Q. Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways. Coatings. 2023; 13(6):1050. https://doi.org/10.3390/coatings13061050
Chicago/Turabian StyleZheng, Mao, Xin Li, Yu Bai, Shijun Tang, Peiyang Li, and Qi Zhu. 2023. "Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways" Coatings 13, no. 6: 1050. https://doi.org/10.3390/coatings13061050
APA StyleZheng, M., Li, X., Bai, Y., Tang, S., Li, P., & Zhu, Q. (2023). Sunlight-Activated Long Persistent Luminescent Coating for Smart Highways. Coatings, 13(6), 1050. https://doi.org/10.3390/coatings13061050