Beyond Cultivation: Combining Culture-Dependent and Culture-Independent Techniques to Identify Bacteria Involved in Paint Spoilage
Abstract
:1. Introduction
2. Material and Methods
2.1. Physicochemical Analyses
2.2. Determination of Colony Forming Units, Colony PCR, and Sequencing
2.3. Most Probable Number
2.4. DNA Extraction and qPCR
2.5. Statistical Analyses
3. Results
3.1. Physicochemical Properties
3.2. Microbiological and Molecularbiological Approaches
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Gao, D.; Xu, W. Effect of paint process on the performance of modified poplar wood antique. Coatings 2021, 11, 1174. [Google Scholar] [CrossRef]
- Phulpoto, A.H.; Qazi, M.A.; Mangi, S.; Ahmed, S.; Kanhar, N.A. Biodegradation of oil-based paint by Bacillus species monocultures isolated from the paint warehouses. Int. J. Environ. Sci. Technol. 2016, 13, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, H.R.; Rao, S.S.; Karigar, C.S. Biodegradation of paints: A current status. Indian J. Sci. Technol. 2012, 5, 1977–1987. [Google Scholar] [CrossRef]
- Mardones, L.E.; Legnoverde, M.S.; Monzón, J.D.; Bellotti, N.; Basaldella, E.I. Increasing the effectiveness of a liquid biocide component used in antifungal waterborne paints by its encapsulation in mesoporous silicas. Prog. Org. Coat. 2019, 134, 145–152. [Google Scholar] [CrossRef]
- Bellotti, N.; Romagnoli, R.; Quintero, C.; Domínguez-Wong, C.; Ruiz, F.; Deyá, C. Nanoparticles as antifungal additives for indoor water borne paints. Prog. Org. Coat. 2015, 86, 33–40. [Google Scholar] [CrossRef]
- La Rosa, F.R.; Giese, E.C.; Dekker RF, H.; Pelayo, J.S.; de Melo Barbosa, A. Microbiological contamination of water-based paints from an industry in the state of Paraná, Brazil. Ciências Exatas Ciências Exatas Tecnológicase Terra Londrina 2008, 29, 85–92. [Google Scholar]
- Samyn, P.; Bosmans, J.; Cosemans, P. Current Alternatives for In-Can Preservation of Aqueous Paints: A Review. Mater. Proc. 2021, 7, 18. [Google Scholar]
- Abebe, G.M. The role of bacterial biofilm in antibiotic resistance and food contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef]
- Bosso, L.; Cristinzio, G. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol. 2014, 13, 387–427. [Google Scholar] [CrossRef]
- Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape. Acta Oecol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, R.J. Serial dilution with a confirmation step. Food Microbiol. 2005, 22, 547–552. [Google Scholar] [CrossRef]
- Blodgett, R.J. Upper and lower bounds for a serial dilution test. J. AOAC Int. 2005, 88, 1227–1230. [Google Scholar] [CrossRef] [Green Version]
- Blodgett, R.J. Measuring improbability of outcomes from a serial dilution test. Commun. Stat. Theory Methods 2002, 31, 2209–2223. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 2005, 89, 670–679. [Google Scholar] [CrossRef]
- Pereyra, L.P.; Hiibel, S.R.; Prieto Riquelme, M.V.; Reardon, K.F.; Pruden, A. Detection and quantification of functional genes of cellulose-degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea. Appl. Environ. Microbiol. 2010, 76, 2192–2202. [Google Scholar] [CrossRef] [Green Version]
- International Cooperation on Cosmetics Regulation. (n.d.). General and Technical Frequently Asked Questions (FAQs) on Preservatives in Cosmetics. Available online: https://ec.europa.eu/docsroom/documents/15281/attachments/1/translations/en/renditions/native (accessed on 2 June 2023).
- Decagon Devices (2006). Fundamentals of Water Activity. Available online: https://www.graintec.com.au/media/12856/Fundamentals.pdf (accessed on 2 June 2023).
- Gatenby, A. Moisture Content and Water Activity—What Are They? [web log post]. 2013. Available online: https://www.cscscientific.com/csc-cientific-blog/moisture-content-and-water-activity-what-are-they (accessed on 2 June 2023).
- Maduka, C.M.; Igwilo, N.C. Microorganisms Survive in Paints. Cur. Anal. Biotechnol. 2019, 2, 1–5. [Google Scholar]
- Cheroni, S.; Gatti, B.; Margheritis, G.; Formantici, C.; Perrone, L.; Galante, Y.M. Enzyme resistance and biostability of hydroxyalkylated cellulose and galactomannan as thickeners in waterborne paints. Int. Biodeterior. Biodegr. 2012, 69, 106–112. [Google Scholar] [CrossRef]
- Etim, L.B.; Antai, S.P. The effects of temperature and pH bacterial degradation of latex paint in humid environment. Glob. J. Pure Appl. Sci. 2014, 20, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, S.E.; Lynge Hansen, S.; Kofoed, M.V.W.; Schjøth-Eskesen, J. Reducing Biocide Concentrations for Preservation of Water-Based Paints; Environmental Project No. 2014; The Danish Environmental Protection Agency: Odense, Denmark, 2018.
- Olayide, O.F.; Ayomikun, K.E.; Temitope, F.O. A first report on the identification of a novel archaea, Methanospirillum lacunae from spoilt paints in Lagos, Nigeria using a metagenomic approach. Sci. Afr. 2022, 15, e01029. [Google Scholar] [CrossRef]
- Hasan, S.A.; Jabeen, S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol. Biotechnol. Equip. 2015, 29, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Fazenda, J.M.R. Paints and Varnishes: Science and Technology; Edgard Blücher: São Paulo, Brazil, 2005. [Google Scholar]
- Tothill, I.E.; Seal, K.J. Biodeterioration of waterborne paint cellulose thickeners. Int. Biodeterior. Biodegrad. 1993, 31, 241–254. [Google Scholar] [CrossRef]
- Obidi, O.F.; Aboaba, O.O.; Makanjuola, M.S.; Nwachukwu, S.C.U. Microbial evaluation and deterioration of paints and paint-products. J. Environ. Biol. 2009, 30, 835. [Google Scholar] [PubMed]
- Gorbushina, A.A.; Heyrman, J.; Dornieden, T.; Gonzalez-Delvalle, M.; Krumbein, W.E.; Laiz, L.; Swings, J. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int. Biodeterior. Biodegr. 2004, 53, 13–24. [Google Scholar] [CrossRef]
- Wu, W.; Huang, H.; Ling, Z.; Yu, Z.; Jiang, Y.; Liu, P.; Li, X. Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology 2016, 25, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.; Philp, P.; Aw, A.; Christofi, C. The genus rhodococcus. J. Appl. Microbiol. 1998, 85, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Megertu, D.G.; Bayissa, L.D. Heavy metal contents of selected commercially available oil-based house paints intended for residential use in Ethiopia. Environ. Sci. Pollut. Res. 2020, 27, 17175–17183. [Google Scholar] [CrossRef]
- Pandey, P.; Kiran, U.V. Degradation of paints and its microbial effect on health and environment. J. Crit. Rev 2020, 7, 4879–4884. [Google Scholar]
- Pontes, D.S.; Lima-Bittencourt, C.I.; Chartone-Souza, E.; Amaral Nascimento, A.M. Molecular approaches: Advantages and artifacts in assessing bacterial diversity. J. Ind. Microbiol. Biotechnol. 2007, 34, 463–473. [Google Scholar] [CrossRef]
- Koschorreck, M. Microbial sulphate reduction at a low pH. FEMS Microbiol. Ecol. 2008, 64, 329–342. [Google Scholar] [CrossRef]
Paint | pH | aw-Value | Wc [%] | Vc [%] | Pc [%] |
---|---|---|---|---|---|
A | 8.0 | 0.98 (0.001) | 46.7 (0.6) | 67.0 (2.7) | 53.2 (2.5) |
B | 10.5 | 0.98 (0.002) | 50.0 (0.9) | 48.8 (0.3) | 79.5 (3.5) |
C | 8.5 | 0.98 (0.001) | 40.4 (0.3) | 59.5 (1.6) | 84.2 (1.4) |
Organism | Paint | Accession Number | Similarity [%] |
---|---|---|---|
Delftia spp. | A | NR_113708.1 | >99 |
C | NR_113870.1 | >99 | |
Flavobacterium sp. | A | NR_104713.1 | >99 |
Microbacterium sp. | A | NR_044936.1 | >98 |
Rhodococcus sp. | A | NR_145886.1 | >99 |
Rhodopseudomonas sp. | A | NR_036771.1 | >99 |
Alcaligenes sp. | B | NR_113606.1 | >99 |
Comamonas sp. | B | NR_114865.1 | >97 |
Providencia sp. | B | NR_115880.1 | >98 |
Citrobacter sp. | C | NR_117752.1 | >99 |
Staphylococcus sp. | C | NR_156818.1 | >99 |
Bacillus spp. | A,B | NR_112636.1 | >99 |
C | NR_164882.1 | >99 | |
Pseudomonas spp. | A,C | NR_114226.1 | >99 |
B,C | NR_181196.1 | >99 | |
A,C | NR_040802.1 | >99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutschlechner, M.; Walter, A.; Bach, K.; Schöbel, H. Beyond Cultivation: Combining Culture-Dependent and Culture-Independent Techniques to Identify Bacteria Involved in Paint Spoilage. Coatings 2023, 13, 1055. https://doi.org/10.3390/coatings13061055
Mutschlechner M, Walter A, Bach K, Schöbel H. Beyond Cultivation: Combining Culture-Dependent and Culture-Independent Techniques to Identify Bacteria Involved in Paint Spoilage. Coatings. 2023; 13(6):1055. https://doi.org/10.3390/coatings13061055
Chicago/Turabian StyleMutschlechner, Mira, Andreas Walter, Katrin Bach, and Harald Schöbel. 2023. "Beyond Cultivation: Combining Culture-Dependent and Culture-Independent Techniques to Identify Bacteria Involved in Paint Spoilage" Coatings 13, no. 6: 1055. https://doi.org/10.3390/coatings13061055
APA StyleMutschlechner, M., Walter, A., Bach, K., & Schöbel, H. (2023). Beyond Cultivation: Combining Culture-Dependent and Culture-Independent Techniques to Identify Bacteria Involved in Paint Spoilage. Coatings, 13(6), 1055. https://doi.org/10.3390/coatings13061055