Improving Microbial Fuel Cell Performance Using Porous Capacitive Composite Bioanode Materials with Energy Storage Function
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Physicochemical Characterization of the Sponge/Carbon Nanotube/Polypyrrole Electrode
3.2. Performance of Microbial Fuel Cells Equipped with Sponge/Carbon Nanotube/Polypyrrole Anodes
4. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Chen, Y.; Wen, Q.; Zheng, H.; Xu, H.; Qi, L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy 2019, 189, 116342. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Raouf, F.; Navidjouy, N. A review on the application of nanomaterials in improving microbial fuel cells. Biofuel Res. J. 2021, 30, 1400–1416. [Google Scholar] [CrossRef]
- Ahanchi, M.; Jafary, T.; Yeneneh, A.M.; Rupani, P.F.; Shafizadeh, A.; Shahbeik, H.; Pan, J.; Tabatabaei, M.; Aghbashlo, M. Review on waste biomass valorization and power management systems for microbial fuel cell application. J. Clean. Prod. 2022, 380, 134994. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Yin, J.; Duan, T. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation. Appl. Biochem. Biotechnol. 2016, 180, 1372–1385. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Li, P.; Xu, Y.; Fan, M.; Zhu, S.; Shen, S. Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes. Energy 2016, 109, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qing, W.; Chen, Y.; Qi, L. A novel polyaniline interlayer manganese dioxide composite anode for high-performance microbial fuel cell. J. Taiwan Inst. Chem. E 2017, 75, 112–118. [Google Scholar] [CrossRef]
- Ci, S.; Wen, Z.; Chen, J.; He, Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem. Commun. 2012, 14, 71–74. [Google Scholar] [CrossRef]
- Delord, B.; Neri, W.; Bertaux, K.; Bertaux, K.; Derre, A.; Ly, I.; Mano, N.; Poulin, P. Carbon nanotube fiber mats for microbial fuel cell electrodes. Bioresour. Technol. 2017, 243, 1227–1231. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.M.; Bao, S.; Bao, Q. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170, 79–84. [Google Scholar] [CrossRef]
- Roh, S.H.; Woo, H.G. Carbon nanotube composite electrode coated with polypyrrole for microbial fuel cell application. J. Nanosci. Nanotechnol. 2015, 15, 484–487. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, Y.; Wei, H.; Li, F.; Hu, Y.; Wei, C.; Feng, C. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim. Acta 2013, 111, 366–373. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, Z.; Song, H.; Xie, Y.; Zhang, M. Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim. Acta 2019, 296, 67–74. [Google Scholar] [CrossRef]
- Erbay, C.; Pu, X. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells. J. Power Sources 2015, 280, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, H.; Chen, Y.; Wen, Q.; Wu, J. Macroporous composite capacitive bioanode applied in microbial fuel cells. Chin. Chem. Lett. 2020, 31, 205–209. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Du, Q. Three-dimensional polypyrrole/MnO2 composite networks deposited on graphite felt as free-standing electrode for supercapacitors. Mater. Lett. 2013, 104, 48–52. [Google Scholar] [CrossRef]
- Lang, X.; Wan, Q.; Feng, C.; Yue, X.; Xu, W.; Li, J.; Fan, S. The role of anthraquinone sulfonate dopants in promoting performance of polypyrrole composites as pseudo-capacitive electrode materials. Synth. Met. 2010, 160, 1800–1804. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Cho, M.S.; Choi, J.; Lee, Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim. Acta 2011, 56, 7460–7466. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Ding, L.; Ren, H.; Cui, H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron. 2011, 26, 4169–4176. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q. Microbial fuel cells: Enhancement with a polyaniline/carbon felt capacitive bioanode and reduction of Cr(VI) using the intermittent operation. Environ. Chem. Lett. 2018, 16, 319–326. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Li, W. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells. Energy 2020, 204, 117942. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Cui, H.F.; Du, L.; Guo, P.B.; Zhu, B.; Luong, J.H.T. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources 2015, 283, 46–53. [Google Scholar] [CrossRef]
- Mishra, P.; Jain, R. Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int. J. Hydrog. Energy 2016, 41, 22394–22405. [Google Scholar] [CrossRef]
- Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells. Environ. Sci. Technol. 2012, 46, 3554–3560. [Google Scholar] [CrossRef]
- Peng, X.; Yu, H.; Wang, X.; Zhou, Q.; Zhang, S.; Geng, L.; Sun, J.; Cai, Z. Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour. Technol. 2012, 121, 450–453. [Google Scholar] [CrossRef]
- Mano, N.; Yoo, J.E.; Tarver, J.; Loo, Y.; Heller, A. An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase. J. Am. Chem. Soc. 2007, 129, 7006–7007. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Jiang, Y.; Huang, X. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. J. Power Sources 2015, 273, 580–583. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Soltanian, S.; Kalogirou, S.A.; Ranjbari, M.; Amiri, H.; Mahian, O.; Khoshnevisan, B.; Jafary, T.; Nizami, A.; Gupta, V.K.; Aghaei, S.; et al. Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review. Renew. Sust. Energ. Rev. 2022, 156, 111975. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 35, 1697–1706. [Google Scholar] [CrossRef]
- Amid, S.; Aghbashlo, M.; Tabatabaei, M.; Karimi, K.; Nizami, A.; Rehan, M.; Hosseinzadeh-Bandbafha, H.; Soufiyan, M.M.; Peng, W.; Lam, S.S. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energ. Convers Manag. 2021, 227, 113637. [Google Scholar] [CrossRef]
- Rani, G.M.; Wu, C.; Motora, K.G.; Umapathi, R.; Jose, C.R.M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 2023, 108, 108211. [Google Scholar] [CrossRef]
- Serag, E.; El-Maghraby, A.; Nemr, A.E. Recent developments in the application of carbon-based nanomaterials in implantable and wearable enzyme-biofuel cells. Carbon Lett. 2022, 32, 395–412. [Google Scholar] [CrossRef]
- Rani, G.M.; Wu, C.; Motora, K.G.; Umapathi, R. Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, S.; Liu, Y.; Tang, J. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol. 2013, 47, 14525–14532. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, H.; Li, Y.; Bao, W.; Fang, Z.; Preston, C.; Vaaland, O.; Ren, Z.; Hu, L. Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting. Nano Energy 2014, 10, 268–276. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, S.; He, M. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. J. Power Sources 2018, 376, 33–40. [Google Scholar] [CrossRef]
- Lu, M.; Qian, Y.; Yang, C.; Huang, X.; Li, H.; Xie, X.; Huang, L.; Huang, W. Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy 2017, 32, 382–388. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hu, G.; Dong, J.; Wang, J. Improving Microbial Fuel Cell Performance Using Porous Capacitive Composite Bioanode Materials with Energy Storage Function. Coatings 2023, 13, 1322. https://doi.org/10.3390/coatings13081322
Wang Y, Hu G, Dong J, Wang J. Improving Microbial Fuel Cell Performance Using Porous Capacitive Composite Bioanode Materials with Energy Storage Function. Coatings. 2023; 13(8):1322. https://doi.org/10.3390/coatings13081322
Chicago/Turabian StyleWang, Yuyang, Guangxu Hu, Jing Dong, and Jing Wang. 2023. "Improving Microbial Fuel Cell Performance Using Porous Capacitive Composite Bioanode Materials with Energy Storage Function" Coatings 13, no. 8: 1322. https://doi.org/10.3390/coatings13081322
APA StyleWang, Y., Hu, G., Dong, J., & Wang, J. (2023). Improving Microbial Fuel Cell Performance Using Porous Capacitive Composite Bioanode Materials with Energy Storage Function. Coatings, 13(8), 1322. https://doi.org/10.3390/coatings13081322