The Application of Carotenoid-Coated Chitosan Nanoparticles to Reduce the PAHs Stress on Spinach Growth
Abstract
:1. Introduction
2. Material and Methods
2.1. Carotenoid-Coated Chitosan Nanoparticles (CCNPs) Preparation
2.2. Greenhouse Experiment
2.3. PAHs Extraction and Analysis
2.4. Bioconcentration Factor (BCF) and Translocation Factor (TF)
2.5. Statistics
3. Results
3.1. The CCNPs Characteristics
3.2. The Phenotype and Growth of the Spinach
3.3. The PAHs Concentration in Spinach
3.4. BCFs and TFs
4. Discussion
4.1. Preparation of CCNPs and PAHs Accumulation
4.2. CCNPs and PAHs Transfer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhang, Y.; Xie, Z.; Zhen, Y.; Hu, W.; Dong, H. Polycyclic aromatic hydrocarbon-based organic semiconductors: Ring-closing synthesis and optoelectronic properties. J. Mater. Chem. C 2022, 10, 2411–2430. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, L.; Shi, Q.; Liu, S.; Qian, L.; Yu, Z.; Wang, H.; Lei, J.; Gao, Z.; Long, H.; et al. Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development. Chem. Eng. J. 2022, 448, 137601. [Google Scholar] [CrossRef]
- Vijayanand, M.; Ramakrishnan, A.; Subramanian, R.; Issac, P.K.; Nasr, M.; Khoo, K.S.; Rajagopal, R.; Greff, B.; Wan Azelee, N.I.; Jeon, B.H.; et al. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate. Env. Res. 2023, 227, 115716. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.O.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F., Jr. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Sci. Total Environ. 2022, 848, 157774. [Google Scholar] [CrossRef]
- Janneh, M.; Qu, C.; Zhang, Y.; Xing, X.; Nkwazema, O.; Nyihirani, F.; Qi, S. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in agricultural and dumpsite soils in Sierra Leone. RSC Adv. 2023, 13, 7102–7116. [Google Scholar] [CrossRef]
- Han, L.; Bai, J.; Gao, Z.; Wang, W.; Wang, D.; Cui, B.; Liu, X. Polycyclic aromatic hydrocarbons (PAHs) in surface soils from reclaimed and ditch wetlands along a 100-year chronosequence of reclamation in a Chinese estuary: Occurrence, sources, and risk assessment. Agric. Ecosyst. Environ. 2019, 286, 106648. [Google Scholar] [CrossRef]
- Wu, F.; Tian, K.; Wang, J.; Bao, H.; Luo, W.; Zhang, H.; Hong, H. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content. Ecotoxicol. Environ. Saf. 2019, 183, 109567. [Google Scholar] [CrossRef]
- Molina, L.; Segura, A. Biochemical and metabolic plant responses toward polycyclic aromatic hydrocarbons and heavy metals present in atmospheric pollution. Plants 2021, 11, 2305. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Wang, W.; Zhu, L. Mechanism of growth inhibition mediated by disorder of chlorophyll metabolism in rice (Oryza sativa) under the stress of three polycyclic aromatic hydrocarbons. Chemosphere 2023, 329, 138554. [Google Scholar] [CrossRef]
- Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J.L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Env. Qual. 2002, 31, 1649–1656. [Google Scholar] [CrossRef]
- Schwab, A.P.; Dermody, C.L. Pathways of polycyclic aromatic hydrocarbons assimilation by plants growing in contaminated soils. Adv. Agron. 2021, 169, 193–250. [Google Scholar]
- Shen, Y.; He, F.; Zhu, J.; Zhang, H.; Wang, J.; Wang, H.; Zhan, X. Proton-coupled cotransporter involves phenanthrene xylem loading in roots. Sci. Total Env. 2021, 773, 145637. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Jiao, X.C.; Chen, S.H.; Liu, W.X.; Coveney, R.M., Jr.; Zhu, L.Z.; Luo, Y.M. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Env. Pollut. 2006, 140, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Chen, D.; Gao, Y.; Zhang, Y. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessner, I.; Neundorf, I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2020, 21, 2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.R.; Zhu, Y.X.; Duan, Q.Y.; Chen, Z.; Wu, F.G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control Release 2019, 311–312, 301–318. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, S.; Liu, J.; Liu, F.; Du, F.; Li, M.; Chen, A.T.; Bao, Y.; Suh, H.W.; Avery, J.; et al. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. Small 2019, 15, e1902011. [Google Scholar] [CrossRef]
- Kalam, M.A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 127–136. [Google Scholar] [CrossRef]
- Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seica, R.; Ribeiro, A.; Santos, H.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control Release 2016, 232, 29–41. [Google Scholar] [CrossRef]
- Tong, T.; Wang, L.; You, X.; Wu, J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater. Sci. 2020, 8, 5804–5823. [Google Scholar] [CrossRef]
- Faqir, Y.; Ma, J.; Chai, Y. Chitosan in modern agriculture production. Plant Soil. Environ. 2021, 67, 679–699. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Boutrif, E. Institutions involved in food safety: Food and agriculture organization of the United Nations (FAO). Encycl. Food Saf. 2014, 4, 354–358. [Google Scholar]
- Yan, N.; Chen, X. Don’t waste seafood waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef] [Green Version]
- Şenol, Z.M.; Şimşek, S. Insights into effective adsorption of lead ions from aqueous solutions by using chitosan-bentonite composite beads. J. Polym. Environ. 2022, 30, 3677–3687. [Google Scholar] [CrossRef]
- Buchman, J.T.; Elmer, W.H.; Ma, C.; Landy, K.M.; White, J.C.; Haynes, C.L. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (Watermelon): Enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustain. Chem. Eng. 2019, 7, 19649–19659. [Google Scholar] [CrossRef]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; De Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163171. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Gu, R.; Yue, L.; Wang, H.; Zhan, X.; Xing, B. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere 2018, 197, 513–525. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Shi, S.; Gu, R.; Zhan, X. Application of carotenoid to alleviate the oxidative stress caused by phenanthrene in wheat. Environ. Sci. Pollut. Res. 2019, 26, 3593–3602. [Google Scholar] [CrossRef]
- Stutz, H.; Bresgen, N.; Eckl, P.M. Analytical tools for the analysis of β-carotene and its degradation products. Free. Radic. Res. 2015, 49, 650–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iammarino, M.; Di Taranto, A.; Cristino, M. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): A contribution to risk assessment. J. Sci. Food Agric. 2014, 94, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Sushkova, S.; Minkina, T.; Tarigholizadeh, S. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian J. Soil Sci. 2020, 9, 242253. [Google Scholar] [CrossRef]
- Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; et al. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release 2014, 176, 54–63. [Google Scholar] [CrossRef]
- Qu, X.; Wirsen, A.; Albertsson, A.C. Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water. Polymer 2000, 41, 4589–4598. [Google Scholar] [CrossRef]
- Lavanya, K.; Chandran, S.V.; Chandran, K.; Selvamurugan, N. Temperature-and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Mater. Sci. Eng. C 2020, 111, 110862. [Google Scholar] [CrossRef]
- Sreekumar, S.; Goycoolea, F.M.; Moerschbacher, B.M.; Rivera-Rodriguez, G.R. Parameters influencing the size of chitosan-TPP nano-and microparticles. Sci. Rep. 2018, 8, 4695. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Khan, S.B.; Kamal, T.; Anwar, Y.; Alamry, K.A.; Asiri, A.M. Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr. Polym. 2017, 173, 676–689. [Google Scholar] [CrossRef]
- Rani, M.; Shanker, U. Metal oxide-chitosan based nanocomposites for efficient degradation of carcinogenic PAHs. J. Environ. Chem. Eng. 2020, 8, 103810. [Google Scholar] [CrossRef]
- Rodrigues, P.R.; Nascimento, L.E.S.; Godoy, H.T.; Vieira, R.P. Improving chitosan performance in the simultaneous adsorption of multiple polycyclic aromatic hydrocarbons by oligo (β-pinene) incorporation. Carbohydr. Polym. 2023, 302, 120379. [Google Scholar] [CrossRef]
Treatments | T/°C | TPP (mg/mL) | pH |
---|---|---|---|
T1 | 20 | 10 | 5 |
T2 | 20 | 10 | 6 |
T3 | 20 | 20 | 5 |
T4 | 20 | 20 | 6 |
T5 | 40 | 10 | 5 |
T6 | 40 | 10 | 6 |
T7 | 40 | 20 | 5 |
T8 | 40 | 20 | 6 |
Treatment | Bioconcentration Factor (BCF) | Transfer Factor (TF) | ||
---|---|---|---|---|
BCFPYR | BCFPHE | TFPYR | TFPHE | |
T1 | 0.390 | 0.198 | 0.011 | 0.063 |
T2 | 0.088 | 0.035 | 0.007 | 0.079 |
T3 | 0.329 | 0.380 | 0.166 | 0.040 |
T4 | 0.180 | 0.165 | 0.085 | 0.026 |
T5 | 0.188 | 0.158 | 0.032 | 0.034 |
T6 | 0.567 | 0.084 | 0.009 | 0.064 |
T7 | 0.200 | 0.191 | 0.268 | 0.061 |
T8 | 0.226 | 0.037 | 0.049 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cui, M.; Tao, R.; Yao, Y.; Han, J.; Shen, Y. The Application of Carotenoid-Coated Chitosan Nanoparticles to Reduce the PAHs Stress on Spinach Growth. Coatings 2023, 13, 1404. https://doi.org/10.3390/coatings13081404
Zhang J, Cui M, Tao R, Yao Y, Han J, Shen Y. The Application of Carotenoid-Coated Chitosan Nanoparticles to Reduce the PAHs Stress on Spinach Growth. Coatings. 2023; 13(8):1404. https://doi.org/10.3390/coatings13081404
Chicago/Turabian StyleZhang, Jin, Menghan Cui, Ran Tao, Yifan Yao, Jiangang Han, and Yu Shen. 2023. "The Application of Carotenoid-Coated Chitosan Nanoparticles to Reduce the PAHs Stress on Spinach Growth" Coatings 13, no. 8: 1404. https://doi.org/10.3390/coatings13081404
APA StyleZhang, J., Cui, M., Tao, R., Yao, Y., Han, J., & Shen, Y. (2023). The Application of Carotenoid-Coated Chitosan Nanoparticles to Reduce the PAHs Stress on Spinach Growth. Coatings, 13(8), 1404. https://doi.org/10.3390/coatings13081404