Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review
Abstract
:1. Introduction
2. Problems with Silicon Anodes
3. Silicon Anode Structure Optimization
3.1. Size Reduction
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
porous silicon nanowire | block copolymer lithography | 1450 | 50 | 0.1 C | [21] |
silicon whiskers | VLS | 3500 | 20 | 0.2 C | [22] |
Si@NixSi/Ni | ball milling and anneal | 521.5 | 5000 | 500 mA g−1 | [23] |
Porous amorphous si film | radio-frequency magnetron sputtering | 300 | 100 | 0.1 mA cm−2 | [24] |
multilayer-like Si thin films | magnetron sputtering | 1905.05 | 100 | 0.2 C | [25] |
silicon film | magnetron sputtering | 1316.7 | 500 | 0.5 C | [26] |
Gt-SiNM | liquid phase deposition and heating | 900 | 300 | 0.2 C | [28] |
silicon nanotubes | in situ growth and magnesiothermic thermal reduction | 1000 | 90 | 0.5 C | [29] |
Si nanotubes | chemical deposition | 2800 | 200 | 1 C | [30] |
HSi@C | sol-gel reaction and magnesiothermic and hydrogen reductions | 700 | 100 | 2 A g−1 | [31] |
spherical porous silicon | hydrothermal | 960 | 500 | 3.6 A g−1 | [32] |
Si@FA | spray drying | 917.28 | 100 | 0.1 A g−1 | [33] |
3.2. Porous Structure
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
SiNTs | template-directed | 1670 | 30 | 0.05 C | [34] |
porous silicon thin films | the vapor deposition and annealing | 1300 | 30 | 0.1 C | [35] |
P-Si@TiSi2 | magnesium thermal reduction and etching | 1180 | 50 | 400 mA g−1 | [36] |
MSS | electrochemical etching | 640 | 1000 | 1 A g−1 | [37] |
N-PoSi@C | etching and CVD | 1170.7 | 100 | 4 A g−1 | [38] |
porous doped silicon nanowires | chemical etching | 1100 | 250 | 18 A g−1 | [39] |
hp-SiNSs | magnesium thermal reduction | 1800 | 200 | 0.05 C | [40] |
AMPSi@C | thermal nitridation and etching | 1271 | 1000 | 2100 mA g−1 | [41] |
porous Si@C | ball grinding and calcination | 630 | 100 | 0.2 C | [42] |
Porous C/Si nanocomposite | template method | 450 | 50 | 150 mA g−1 | [43] |
CNT@Si@C | in situ aluminothermic reduction | 1500 | 1500 | 1 mA cm−2 | [44] |
3.3. Binder/Current Collector Free Silicon Anode
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
carbon scaffold Si anode | the slurry spray technique and carbonize | 1792 | 123 | 0.05 C | [45] |
Si–Sn/Cu3Si@C–P260 | heat pressing | 1532 | 100 | 300 mA g−1 | [46] |
C-coated SiNFs | magnesium thermal reduction and electrospinning | 802 | 659 | 0.1 C | [47] |
SHCM/NCF | magnesium thermal reduction and electrospinning | 1442 | 800 | 1 A g−1 | [48] |
RGO/Si | homogenous dispersion and asting | 835 | 100 | 10 A g−1 | [49] |
Si NWs-carbon textiles matrix | CVD and spray-coating operation and thermal treatment. | 2950 | 200 | 0.2 C | [50] |
VASCNT | CVD | 1950 | 20 | 100 mA g−1 | [51] |
TaNS-Si | gas-phase deposition and magnetron sputtering | 2832 | 100 | 0.5 C | [52] |
SiNW@G@RGO | CVD and thermal reduction | 1600 | 100 | 2.1 A g−1 | [53] |
Si/C–C | electrospinning | 886.5 | 50 | 50 mA g−1 | [54] |
GFF/Si–37.5% | Electrospinning and two-step reduction | 920 | 100 | 0.4 mA cm−2 | [55] |
Si–Ni–C | electrospinning and thermal treatment | 622 | 100 | 100 mA g−1 | [56] |
Si–O–C | electrodeposition | 831 | 7000 | 250 μA cm−2 | [57] |
EPD-5s | electrophoretic deposition | 1516 | 200 | 1 C | [58] |
4. Optimization of Surface Structure of Silicon Anode
4.1. Coating Structure
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
sCCSi | thermal annealing | 736 | 300 | 0.5 A g−1 | [59] |
Si@C#480 | thermal annealing | 898 | 480 | 0.5 C | [60] |
PSi/C | spray-drying technique | 933.6 | 100 | 0.1 A g−1 | [61] |
G/Si@CFs | CVD | 896.8 | 200 | 0.1 A g−1 | [62] |
bmSi@C/rGO | thermal annealing | 935.77 | 100 | 0.2 A g−1 | [63] |
Si@TA-G | etching and CVD | 1249.8 | 150 | 0.1 A g−1 | [64] |
carbon-coated Si NWs | vapor–liquid–solid growth method | 1540 | 40 | 0.5 C | [65] |
Ag-coated SiNW | MACE | 707 | 30 | 0.5 C | [66] |
SFLS SiNW | gold-seeded SFLS growth | 1500 | 30 | 0.2 C | [67] |
N1-Si/CMAs | Cu Micro-cone Arrays (CMAs) | 1121 | 200 | 0.2 C | [68] |
20-ALD-Si | photolithography and reactive-ion etching (RIE) | 1100 | 100 | 0.175 A g−1 | [69] |
PSi@C (N) | low temperature magnesium thermal reduction technology and oxidation control | 803.92 | 300 | 0.3 A g−1 | [70] |
[email protected] | electrospinning and magnesium thermal reduction | 710 | 500 | 0.2 A g−1 | [71] |
Si–C composite | mild sol-gel process and subsequent thermal disproportionation | 1570 | 150 | 0.4 A g−1 | [72] |
CNS/Si/Al2O3 | etching and CVD | 1560 | 100 | 1 A g−1 | [73] |
SiNP-PANi | in situ polymerization | 550 | 5000 | 6 A g−1 | [74] |
4.2. Sandwich Structure
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
sandwich electrode | many times coated | 1090 | 30 | 100 mA g−1 | [75] |
sandwich structure electrode | drop and press and calender | 1000 | 400 | 0.5 A g−1 | [76] |
Si/Ti3C2Tx | etching and electrostatic self-assembly | 643.8 | 100 | 300 mA g−1 | [77] |
Si/MXene | etching and vaccum filtration | 1672 | 200 | 1000 mA g−1 | [78] |
MS-G@C | ball milling and thermally treated | 830 | 100 | 0.5 C | [79] |
SG-Si | Hummer method and thermally treated | 1033 | 2275 | 2 A g−1 | [80] |
G/CNT/Si | ball milling and thermally treat | 420 | 60 | 808 mA g−1 | [81] |
Si/HG@LG | high-temperature annealing and grinding | 1050 mA h cm−3 | 300 | 2000 mA g−1 | [82] |
Si/Polyaniline/Graphene | Ultrasonication and mix | 1400 | 250 | 160 mA g−1 | [83] |
Si/rGO bilayer nanomembrane | Hummer method and sequentially deposit | 571 | 2000 | 3 A g–1 | [85] |
SiN/Si/SiN | PE-CVD and thermal annealing | 1702 | 100 | 0.6 C | [86] |
carbon/silicon/TiOx | deposition and carbonization and Mg reduction | 792.6 | 160 | 100 mA g−1 | [87] |
C–Si–Fe2O3 | mixing and thermally treat | 1980.5 | 220 | 750 mA g−1 | [88] |
5. Artificial SEI
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef]
- Kong, X.; Xi, Z.; Wang, L.; Zhou, Y.; Liu, Y.; Wang, L.; Li, S.; Chen, X.; Wan, Z. Recent Progress in Silicon−Based Materials for Performance−Enhanced Lithium−Ion Batteries. Molecules 2023, 28, 2079. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries. Small Struct. 2021, 2, 2100009. [Google Scholar] [CrossRef]
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Abraham, K.M. Prospects and Limits of energy storage in batteries. J. Phys. Chem. Lett. 2015, 6, 830–844. [Google Scholar] [CrossRef]
- Ding, N.; Xu, J.; Yao, Y.; Wegner, G.; Lieberwirth, I.; Chen, C. Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources 2009, 192, 644–651. [Google Scholar] [CrossRef]
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Du, F.-H.; Wang, K.-X.; Chen, J.-S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, G.; Liu, N.; Carney, T.J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909. [Google Scholar] [CrossRef]
- Demirkan, M.T.; Yurukcu, M.; Dursun, B.; Demir-Cakan, R.; Karabacak, T. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes. Mater. Res. Express 2017, 4, 106405. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, S.H.; Woo, S.P.; Kim, H.S.; Yoon, Y.S. Fabrication of amorphous Si and C anode films via co-sputtering for an all-solid-state battery. Thin Solid Film. 2014, 564, 58–64. [Google Scholar] [CrossRef]
- Chen, Z.H.; Jia, H.; Hoeppener, S.; Friebe, C.; Wang, J.D.; Chanteux, G.; Xie, D.J.; Lu, Y.; Vlad, A.; Schubert, U.S.; et al. Hollow porous silicon nanospheres with 3D SiC@C coating as high-performance anodes. Mater. Design. 2023, 226, 111624. [Google Scholar] [CrossRef]
- Park, M.S.; Park, E.; Lee, J.; Jeong, G.; Kim, K.J.; Kim, J.H.; Kim, Y.J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces 2014, 6, 9608–9613. [Google Scholar] [CrossRef]
- Nugroho, A.P.; Hawari, N.H.; Prakoso, B. Vertically aligned n-type silicon nanowire array as a free-standing anode for lithium-ion batteries. Nanomaterials 2021, 11, 3137. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.L.; Ding, Y.; Yu, G.H. Amorphous silicon honeycombs as a binder/carbon-free, thin-film Li-ion battery anode. Chem. Commun. 2014, 50, 12959–12962. [Google Scholar] [CrossRef]
- Bang, B.M.; Kim, H.; Lee, J.P.; Cho, J.; Park, S. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 2011, 4, 3395–3399. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Tamirat, A.G.; Lui, Y.; Dong, X.; Wang, C.; Wang, Y.; Xia, Y. Ultrathin silicon nanolayer implanted NixSi/Ni nanoparticles as superlong-cycle lithium-ion anode material. Small Struct. 2021, 2, 2000126. [Google Scholar] [CrossRef]
- Sakabe, J.; Ohta, N.; Ohnishi, T.; Mitsuishi, K.; Takada, K. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. Commun. Chem. 2018, 1, 24. [Google Scholar] [CrossRef]
- Wang, M.X.; Geng, Z.R. Facile synthesis of multilayer-like Si thin film as high-performance anode materials for lithium-ion batteries. Appl. Phys. A 2016, 122, 1–8. [Google Scholar] [CrossRef]
- Chen, L.B.; Xie, J.Y.; Yu, H.C.; Wang, T.H. An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 2009, 39, 1157–1162. [Google Scholar] [CrossRef]
- Sung, J.; Kim, N.; Ma, J.; Lee, J.H.; Joo, S.H.; Lee, T.; Chae, S.; Yoon, M.; Lee, Y.; Hwang, J.; et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy 2021, 6, 1164–1175. [Google Scholar] [CrossRef]
- Karuppiah, S.; Keller, C.; Kumar, P.; Jouneau, P.-H.; Aldakov, D.; Ducros, J.-B.; Lapertot, G.; Chenevier, P.; Haon, C. A Scalable silicon nanowires-grown-on-graphite composite for high-energy lithium batteries. ACS Nano 2020, 14, 12006–12015. [Google Scholar] [CrossRef]
- Wen, Z.H.; Lu, G.H.; Mao, S.; Kim, H.; Cui, S.M.; Yu, K.H.; Huang, X.K.; Hurley, P.T.; Mao, O.; Chen, J.H. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013, 29, 67–70. [Google Scholar] [CrossRef]
- Park, M.-H.; Kim, M.G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847. [Google Scholar] [CrossRef]
- Ashuri, M.; He, Q.R.; Liu, Y.Z.; Zhang, K.; Emani, S.; Sawicki, M.S.; Shamie, J.S.; Shaw, L.L. Hollow silicon nanospheres encapsulated with a thin carbon shell: An electrochemical study. Electrochim. Acta 2016, 215, 126–141. [Google Scholar] [CrossRef]
- Liang, J.W.; Li, X.N.; Zhu, Y.C.; Guo, C.; Qian, Y.T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504. [Google Scholar] [CrossRef]
- Pu, J.; Qin, J.; Wang, Y.; Qiao, Z.; Yu, X.; Xu, J.; Zhang, X.; Ruan, D. Synthesis of micro-nano sphere structure silicon–carbon composite as anode material for lithium-ion batteries. Chem. Phys. Lett. 2022, 806, 140006. [Google Scholar] [CrossRef]
- Tesfaye, A.T.; Gonzalez, R.; Coffer, J.L.; Djenizian, T. Porous silicon nanotube arrays as anode material for Li-Ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20495–20498. [Google Scholar] [CrossRef]
- Saager, S.; Scheffel, B.; Zywitzki, O.; Modes, T.; Piwko, M.; Doerfler, S.; Althues, H.; Metzner, C. Porous silicon thin films as anodes for lithium ion batteries deposited by co-evaporation of silicon and zinc. Surf. Coat. Technol. 2019, 358, 586–593. [Google Scholar] [CrossRef]
- Kim, Y.M.; Ahn, J.; Yu, S.H.; Chung, D.Y.; Lee, K.J.; Lee, J.K.; Sung, Y.E. Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries. Electrochim. Acta 2015, 151, 256–262. [Google Scholar] [CrossRef]
- Li, X.; Gu, M.; Hu, S.; Kennard, R.; Yan, P.; Chen, X.; Wang, C.; Sailor, M.J.; Zhang, J.-G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, J.; Zhang, Y.; Yang, D.; Du, N. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode. Mater. Today Nano 2022, 18, 100175. [Google Scholar] [CrossRef]
- Ge, M.Y.; Rong, J.P.; Fang, X.; Zhou, C.W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323. [Google Scholar] [CrossRef]
- Xiao, Q.; Gu, M.; Yang, H.; Li, B.; Zhang, C.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z.; et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 2015, 6, 8844. [Google Scholar] [CrossRef]
- An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.K.; Huo, K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Fu, X.L.; Wang, J.; Wang, P.; Ding, H.; Song, R.; Wang, S.M.; Li, R.R.; Li, S.Y. In-situ construction of porous Si@C composites with LiCl template to provide silicon anode expansion buffer. Carbon 2021, 173, 687–695. [Google Scholar] [CrossRef]
- Hu, Y.S.; Adelhelm, P.; Smarsly, B.M.; Maier, J. Highly stable lithium storage performance in a porous carbon/silicon nanocomposite. Chemsuschem 2010, 3, 231–235. [Google Scholar] [CrossRef]
- Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X.; et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474. [Google Scholar] [CrossRef]
- Guo, J.C.; Chen, X.L.; Wang, C.S. Carbon scaffold structured silicon anodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 5035–5040. [Google Scholar] [CrossRef]
- Dong, Z.; Du, W.; Gu, H.; Long, Y.; Zhang, C.; Chen, G.; Feng, Z.; Sun, W.; Jiang, Y.; Liu, Y.; et al. A unique structural highly compacted binder-free silicon-based anode with high electronic conductivity for high-performance lithium-ion batteries. Small Structures 2022, 3, 2100174. [Google Scholar] [CrossRef]
- Favors, Z.; Bay, H.H.; Mutlu, Z.; Ahmed, K.; Ionescu, R.; Ye, R.; Ozkan, M.; Ozkan, C.S. Towards scalable binderless electrodes: Carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Sci. Rep. 2015, 5, 8246. [Google Scholar] [CrossRef]
- Zhu, R.Y.; Wang, Z.H.; Hu, X.J.; Liu, X.J.; Wang, H. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101487. [Google Scholar] [CrossRef]
- Zhang, W.; Zuo, P.J.; Chen, C.; Ma, Y.L.; Cheng, X.Q.; Du, C.Y.; Gao, Y.Z.; Yin, G.P. Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. J. Power Sources 2016, 312, 216–222. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Chen, H.; Wang, Z.; Chen, D.; Cheng, Y.B.; Zhou, C.; Shen, G. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Sci. Rep. 2013, 3, 1622. [Google Scholar] [CrossRef]
- Wang, W.; Epur, R.; Kumta, P.N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Commun. 2011, 13, 429–432. [Google Scholar] [CrossRef]
- Haro, M.; Kumar, P.; Zhao, J.; Koutsogiannis, P.; Porkovich, A.J.; Ziadi, Z.; Bouloumis, T.; Singh, V.; Juarez-Perez, E.J.; Toulkeridou, E.; et al. Nano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteries. Commun. Mater. 2021, 2, 16. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.L.; Zhang, X.F.; Luo, B.; Jin, M.H.; Liang, M.H.; Dayeh, S.A.; Picraux, S.T.; Zhi, L.J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, G.; Yao, Y.; Xue, L.; Yanilmaz, M.; Lee, H.; Zhang, X. Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ion. 2014, 258, 67–73. [Google Scholar] [CrossRef]
- Shao, F.; Li, H.; Yao, L.; Xu, S.W.; Li, G.; Li, B.; Zou, C.; Yang, Z.; Su, Y.J.; Hu, N.T.; et al. Binder-free, flexible, and self-standing non-woven fabric anodes based on graphene/Si hybrid fibers for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 27270–27277. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; He, P.; Yan, C.; Gao, Y.; Gao, J.; Lu, H.; Yang, Z. Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery. Mater. Lett. 2018, 231, 205–208. [Google Scholar] [CrossRef]
- Osaka, T.; Nara, H.; Momma, T.; Yokoshima, T. New Si-O-C composite film anode materials for LIB by electrodeposition. J. Mater. Chem. A 2014, 2, 883–896. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Liu, B.; Zhao, J. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 7497–7504. [Google Scholar] [CrossRef]
- Song, S.G.; Li, J.C.; Zheng, A.Q.; Yang, Y.Q.; Yin, K.B. Facile synthesis of sponge-like porous nano carbon-coated silicon anode with tunable pore structure for high-stability lithium-ion batteries. Molecules 2021, 26, 3211. [Google Scholar] [CrossRef]
- Tan, W.; Yang, F.; Lu, Z.G.; Xu, Z.H. A design strategy of carbon coatings on silicon nanoparticles as anodes of high-performance lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 12143–12150. [Google Scholar] [CrossRef]
- Guan, P.; Li, J.; Lu, T.; Guan, T.; Ma, Z.; Peng, Z.; Zhu, X.; Zhang, L. Facile and scalable approach to fabricate granadilla-like porous-structured silicon-based anode for lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 34283–34290. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Hou, G.; Ai, Q.; Zhang, L.; Si, P.; Feng, J.; Ci, L. A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries. Sci. Rep. 2017, 7, 9642. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.L.; Chen, D.Q.; Li, K.; Wang, J.; Zhao, J.B. Electrostatic self-assembly bmSi@C/rGO composite as anode material for lithium ion battery. Electrochim. Acta 2016, 202, 140–146. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Song, Y.; Li, P.; Liu, J. Binary carbon modification promoting the electrochemical performance of silicon anode for lithium-ion batteries. ChemistrySelect 2023, 8, e202204086. [Google Scholar] [CrossRef]
- Chen, H.X.; Xiao, Y.; Wang, L.; Yang, Y. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 6657–6662. [Google Scholar] [CrossRef]
- Baek, S.H.; Park, J.S.; Jeong, Y.M.; Kim, J.H. Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery. J. Alloys Compd. 2016, 660, 387–391. [Google Scholar] [CrossRef]
- Chan, C.K.; Patel, R.N.; O’Connell, M.J.; Korgel, B.A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Chang, C.-C.; Duh, J.-G. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode. J. Power Sources 2016, 325, 64–70. [Google Scholar] [CrossRef]
- He, Y.; Yu, X.Q.; Wang, Y.H.; Li, H.; Huang, X.J. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv. Mater. 2011, 23, 4938–4941. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, F.S.; Chen, X.H.; Li, S.Y.; Ma, W.H.; Ding, Z.; Qu, T.; Dai, Y.N.; Deng, R. Improved lithium-ion batteries with coral-like anodes made of recycled spherical porous silicon coated with nitrogen-doped carbon. Environ. Chem. Lett. 2022, 20, 3377–3385. [Google Scholar] [CrossRef]
- Kong, X.; Zheng, Y.; Wang, Y.; Liang, S.; Cao, G.; Pan, A. Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. 2019, 64, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Song, J.X.; Chen, S.R.; Zhou, M.J.; Xu, T.; Lv, D.P.; Gordin, M.L.; Long, T.J.; Melnyk, M.; Wang, D.H. Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 1257–1262. [Google Scholar] [CrossRef]
- Li, B.; Yao, F.; Bae, J.J.; Chang, J.; Zamfir, M.R.; Le, D.T.; Pham, D.T.; Yue, H.; Lee, Y.H. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Sci. Rep. 2015, 5, 7659. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Yin, G.P.; Cheng, X.Q.; Zuo, P.J. Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode. Electrochim. Acta 2011, 56, 4403–4407. [Google Scholar] [CrossRef]
- Zhao, C.; Luo, X.; Chen, C.; Wu, H. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale 2016, 8, 9511–9516. [Google Scholar] [CrossRef]
- Zhang, F.; Jia, Z.R.; Wang, C.; Feng, A.L.; Wang, K.K.; Hou, T.Q.; Liu, J.J.; Zhang, Y.; Wu, G.L. Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery. Energy 2020, 195, 117047. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Feng, J. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011. [Google Scholar] [CrossRef]
- Sun, Z.X.; Wang, G.J.; Cai, T.W.; Ying, H.J.; Han, W.Q. Sandwich-structured graphite-metallic silicon@C nanocomposites for Li-ion batteries. Electrochim. Acta 2016, 191, 299–306. [Google Scholar] [CrossRef]
- Hassan, F.M.; Batmaz, R.; Li, J.; Wang, X.; Xiao, X.; Yu, A.; Chen, Z. Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries. Nat. Commun. 2015, 6, 8597. [Google Scholar] [CrossRef]
- Huang, Z.D.; Zhang, K.; Zhang, T.T.; Liu, R.Q.; Lin, X.J.; Li, Y.; Feng, X.M.; Mei, Q.B.; Masese, T.; Ma, Y.W.; et al. Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries. Compos. Part. Appl. Sci. Manuf. 2016, 84, 386–392. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, D.H.; Zhang, S.Y.; Li, X.L.; Zhi, L.J. A hierarchical layering design for stable, self-restrained and high volumetric binder-free lithium storage. Nanoscale 2019, 11, 21728–21732. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-A.; Guo, Y.; Chen, Z.; Zhang, X.; Wang, J.; Yang, B. An easy and scalable approach to synthesize three-dimensional sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries. Ceram. Int. 2018, 44, 4282–4286. [Google Scholar] [CrossRef]
- Wei, D.H.; Gao, X.; Zeng, S.Y.; Li, H.B.; Li, H.Y.; Li, W.Z.; Tao, X.Q.; Xu, L.L.; Chen, P. Improving the performance of micro-silicon anodes in lithium-ion batteries with a functional carbon nanotube interlayer. Chemelectrochem 2018, 5, 3143–3149. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Si, W.; Xi, L.; Eichler, B.; Yan, C.; Schmidt, O.G. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano 2015, 9, 1198–1205. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhang, F.; Cao, Y.Z.; Huang, Q.A. Symmetrical sandwich-structured SiN/Si/SiN composite for lithium-ion battery anode with improved cyclability and rate capacity. J. Electrochem. Soc. 2018, 165, A3397–A3402. [Google Scholar] [CrossRef]
- Jia, D.L.; Li, X.; Huang, J.G. Bio-inspired sandwich-structured carbon/silicon/titanium-oxide nanofibers composite as an anode material for lithium-ion batteries. Compos. Part. A Appl. Sci. Manuf. 2017, 101, 273–282. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Rajagopalan, R.; Hu, X.; Huang, Y.; Dou, S.X.; Liu, H.K. One-step synthesis of a silicon/hematite@carbon hybrid nanosheet/silicon sandwich-like composite as an anode material for Li-ion batteries. J. Mater. Chem. A 2016, 4, 4056–4061. [Google Scholar] [CrossRef]
- Chen, W.L.; Chen, K.Y.; Zeng, R.; Wan, M.; Guo, Y.X.; Liao, Y.Q.; Peng, J.Y.; Zhang, W.X.; Huang, Y.H. In situ construction of S-based artificial solid electrolyte interphases layer for stable silicon anode in lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 14136–14143. [Google Scholar] [CrossRef]
- Li, J.; Dudney, N.J.; Nanda, J.; Liang, C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10083–10088. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Yuan, Y.; Wang, Z.; Zhang, H.; Li, X. N-rich solid electrolyte interface constructed in situ via a binder strategy for highly stable silicon anode. Adv. Funct. Mater. 2023, 33, 2301716. [Google Scholar] [CrossRef]
- Bolloju, S.; Abdollahifar, M.; Parthasarathi, S.-K.; Chen, Y.-C.; Weng, Y.-T.; Chao, C.-Y.; Wu, N.-L. Efficient utilization of macropores as artificial solid–electrolyte interphase channels for high-capacity silicon/graphite anode materials. ACS Sustain. Chem. Eng. 2023, 11, 2623–2633. [Google Scholar] [CrossRef]
- Ronneburg, A.; Silvi, L.; Cooper, J.; Harbauer, K.; Ballauff, M. Solid electrolyte interphase layer formation during lithiation of single-crystal silicon electrodes with a protective aluminum oxide coating. ACS Appl. Mater. Interfaces 2021, 13, 21241–21249. [Google Scholar] [CrossRef] [PubMed]
- Ai, Q.; Fang, Q.; Liang, J.; Xu, X.; Zhai, T.; Gao, G.; Guo, H.; Han, G.; Ci, L.; Lou, J. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 2020, 72, 104657. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, X.Y.; Wang, Y.; Huang, W.B.; Li, Y.C.; Huang, Y.H.; Zheng, H.H. Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes. Nano Energy 2022, 93, 106811. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Gong, X.Z.; Feng, Y.K.; Lu, J.J.; Fu, Y.L.; Wang, Z.; Liu, J.H. Constructing an artificial boundary to regulate solid electrolyte interface formation and synergistically enhance stability of nano-Si anodes. J. Colloid Interface Sci. 2022, 619, 158–167. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.; Li, Z.; Zou, H.; Yang, J.; Ding, K.; Cai, Y.-P.; Zheng, Q. A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal batteries. Commun. Mater. 2023, 4, 18. [Google Scholar] [CrossRef]
- Jin, Y.; Li, S.; Kushima, A.; Zheng, X.; Sun, Y.; Xie, J.; Sun, J.; Xue, W.; Zhou, G.; Wu, J.; et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 2017, 10, 580–592. [Google Scholar] [CrossRef]
- Harpak, N.; Davidi, G.; Patolsky, F. Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries. Chem. Eng. J. 2022, 429, 132077. [Google Scholar] [CrossRef]
- Mu, T.; Sun, Y.; Wang, C.; Zhao, Y.; Doyle-Davis, K.; Liang, J.; Sui, X.; Li, R.; Du, C.; Zuo, P.; et al. Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries. Nano Energy. 2022, 103, 107829. [Google Scholar] [CrossRef]
Sample | Synthesis Method | Cycling Stability | |||
---|---|---|---|---|---|
Discharge Capacity [mA h g−1] | After nth Cycle | Current Density | Ref. | ||
Si@S-ARSEI | grinding and thermally treat | 1387 | 500 | 0.5 C | [89] |
Si coated with Lipon | radio-frequency magnetron sputtering | 1600 | 100 | 0.5 C | [90] |
Si-PVAm | mix | 2000 | 200 | 0.1 C | [91] |
Si/Gr | IWI | 550 | 300 | 1 C | [92] |
Si@COF NPs | solvothermal polymerization | 1864 | 1000 | 2 A g−1 | [94] |
Si@TTFPB | wet coating and heating | 1778 | 500 | 0.2 C | [95] |
Si-e-PPy | stirring and sonication | 1153.2 | 500 | 1 A g−1 | [96] |
FO–Si@Li (Full battery) | uniform mixing | 130 | 500 | 1 C | [97] |
Si@TiO2 | hydrothermal and calcination | 990 | 1500 | 0.5 C | [98] |
parylene F coated Si | CVD and parylene coating | 500 | 468 | 2 C | [99] |
Si@ 25-PU | MLD | 1010 | 1000 | 800 mA g−1 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Cui, L.; Zhong, B.; Qu, G. Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review. Coatings 2023, 13, 1502. https://doi.org/10.3390/coatings13091502
Yu Z, Cui L, Zhong B, Qu G. Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review. Coatings. 2023; 13(9):1502. https://doi.org/10.3390/coatings13091502
Chicago/Turabian StyleYu, Zhi, Lijiang Cui, Bo Zhong, and Guoxing Qu. 2023. "Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review" Coatings 13, no. 9: 1502. https://doi.org/10.3390/coatings13091502
APA StyleYu, Z., Cui, L., Zhong, B., & Qu, G. (2023). Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review. Coatings, 13(9), 1502. https://doi.org/10.3390/coatings13091502