Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ceramic Coatings
2.2. Characterization of the Ceramic Coatings
3. Results
3.1. PEO Discharge and Plasma Spectrum
3.2. Morphology of PEO Coating
3.3. Phase Structure of PEO Coatings
4. Discussion
5. Conclusions
- (1)
- Regarding the Al/Ti tracer sample, during the initial non-steady-state stage of the discharge, the primary discharge reaction occurs on the surface of the Al layer. However, as time passes, the surface coating undergoes gradual oxidation along the thickness direction, resulting in the formation of small micro-pores on the coating surface. Unexpectedly, the Ti substrate also participates in the discharge, although the crystallinity of TiO2 at this stage is relatively low.
- (2)
- In the middle stage of the discharge, the PEO process enters a near steady-state phase where the intensity of the plasma spectrum gradually increases. At this stage, the Al peak becomes undetectable, while new peaks corresponding to Ti I and Ti II appear. A significant number of porous structures occur on the coating surface and the intensity of type B discharges at the coating–substrate interface intensifies, indicating substantial Ti involvement in this process. Due to the higher discharge energy involved in this stage, the proportion of anatase phase TiO2 gradually decreases while the proportion of rutile phase TiO2 gradually increases. This trend continues until the late stage of the discharge when the majority of TiO2 evolves into a rutile-phase structure.
- (3)
- During the late stage of discharge, an increasing amount of Ti participates in discharge reactions at the membrane interface. Based on the results of elemental analysis, the enrichment zone of Ti is primarily in the vicinity of the large pore structures. However, as the reaction progresses, molten materials continue to accumulate in the vicinity of the pores, ultimately resulting in closed or semi-closed structured pores. Simultaneously, both type A and type C discharges occur within pores, leading to the evolution of encompassing “honeycomb” structured pores within open pores.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegab, A.; Dahuwa, K.; Islam, R.; Cairns, A.; Khurana, A.; Shrestha, S.; Francis, R. Plasma electrolytic oxidation thermal barrier coating for reduced heat losses in IC engines. Appl. Therm. Eng. 2021, 196, 117316. [Google Scholar] [CrossRef]
- Sobolev, A.; Peretz, T.; Borodianskiy, K. Fabrication and Characterization of Ceramic Coating on Al7075 Alloy by Plasma Electrolytic Oxidation in Molten Salt. Coatings 2020, 10, 993. [Google Scholar] [CrossRef]
- Hussein, R.O.; Nie, X.; Northwood, D.O. Effect of current mode on the plasma discharge, microstructure and corrosion resistance of oxide coatings produced on 1100 aluminum alloy by plasma electrolytic oxidation. WIT Trans. Eng. Sci. 2019, 124, 3–16. [Google Scholar]
- Zhao, C.; Wang, X.; Yu, B.; Cai, M.; Yu, Q.; Zhou, F. Research Progress on the Wear and Corrosion Resistant Plasma Electrolytic Oxidation Composite Coatings on Magnesium and Its Alloys. Coatings 2023, 13, 1189. [Google Scholar] [CrossRef]
- Xiang, M.; Li, T.; Zhao, Y.; Chen, M. The Influence of Negative Voltage on Corrosion Behavior of Ceramic Coatings Prepared by MAO Treatment on Steel. Coatings 2022, 12, 710. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, L.; Li, C.; Li, Z.; Li, H.; Yang, L. Micrographic Properties of Composite Coatings Prepared on TA2 Substrate by Hot-Dipping in Al-Si Alloy and Using Micro-Arc Oxidation Technologies (MAO). Coatings 2020, 10, 374. [Google Scholar] [CrossRef]
- Salahshouri, F.; Saebnoori, E.; Borghei, S.; Mossahebi-Mohammadi, M.; Bakhsheshi-Rad, H.R.; Berto, F. Plasma Electrolytic Oxidation (PEO) Coating on γ-TiAl Alloy: Investigation of Bioactivity and Corrosion Behavior in Simulated Body Fluid. Metals 2022, 12, 1866. [Google Scholar] [CrossRef]
- Staszuk, M.; Reimann, A.; Pakuła, D.; Pawlyta, M.; Musztyfaga-Staszuk, M.; Czaja, P.; Beneš, P. Investigations of TiO2/NanoTiO2 Bimodal Coatings Obtained by a Hybrid PVD/ALD Method on Al-Si-Cu Alloy Substrate. Coatings 2022, 12, 338. [Google Scholar] [CrossRef]
- Omar, N.I.; Yamada, M.; Yasui, T.; Fukumoto, M. Bonding Mechanism of Cold-Sprayed TiO2 Coatings on Copper and Aluminum Substrates. Coatings 2021, 11, 1349. [Google Scholar] [CrossRef]
- Hui, B.; Fu, X.; Gibson, D.; Child, D.; Song, S.; Fleming, L.; Rutins, G.; Chu, H.; Clark, C.; Reid, S. Automated Control of Plasma Ion-Assisted Electron Beam-Deposited TiO2 Optical Thin Films. Coatings 2018, 8, 272. [Google Scholar] [CrossRef]
- Nahum, E.Z.; Lugovskoy, S.; Lugovskoy, A.; Kazanski, B.; Sobolev, A. The study of hydroxyapatite growth kinetics on CP–Ti and Ti65Zr treated by Plasma electrolytic oxidation process. J. Mater. Res. Technol. 2023, 24, 2169–2186. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Wang, R.; Wu, G.R.; Chen, D.; Wang, D.D.; Liu, X.T.; Li, D.L.; Guo, C.H.; Yu, S.X.; et al. An investigation of microstructure evolution for plasma electrolytic oxidation (PEO) coated Al in an alkaline silicate electrolyte. Surf. Coat. Technol. 2018, 351, 136–152. [Google Scholar] [CrossRef]
- Wu, G.; Li, L.; Sun, M.; Wang, Y.; Luo, F.; Zhang, Q.; Liu, R.; Chen, Z.; Yao, J. Microstructural evolution and biological properties of PEO coating on SLM-prepared NiTi alloy. Surf. Coat. Technol. 2023, 452, 129065. [Google Scholar] [CrossRef]
- Sobolev, A.; Peretz, T.; Borodianskiy, K. Synthesis and growth mechanism of ceramic coatings on an Al-Cu alloy using plasma electrolytic oxidation in molten salt. J. Alloys Compd. 2021, 869, 159309. [Google Scholar] [CrossRef]
- Malinovschi, V.; Marin, A.; Andrei, V.; Coaca, E.; Mihailescu, C.N.; Lungu, C.P.; Radulescu, C.; Dulama, I.D. Obtaining and characterization of PEO layers prepared on CP-Ti in sodium dihydrogen phosphate dihydrate acidic electrolyte solution. Surf. Coat. Technol. 2019, 375, 621–636. [Google Scholar] [CrossRef]
- Lee, J.; Jung, K.; Kim, S. Characterization of ceramic oxide coatings prepared by plasma electrolytic oxidation using pulsed direct current with different duty ratio and frequency. Appl. Surf. Sci. 2020, 516, 146049. [Google Scholar] [CrossRef]
- Gao, F.; Hao, L.; Li, G.; Xia, Y. The plasma electrolytic oxidation micro-discharge channel model and its microstructure characteristic based on Ti tracer. Appl. Surf. Sci. 2018, 431, 13–16. [Google Scholar] [CrossRef]
- Jovović, J.; Stojadinović, S.; Šišović, N.M.; Konjević, N. Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium. Surf. Coat. Technol. 2011, 206, 24–28. [Google Scholar] [CrossRef]
- Zhan, T.; Tu, W.; Cheng, Y.; Han, J.; Su, B.; Cheng, Y. The synthesis of micro and nano WO3 powders under the sparks of plasma electrolytic oxidation of Al in a tungstate electrolyte. Ceram. Int. 2018, 44, 10402–10411. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Petković, M.; Kasalica, B.; Belča, I.; Žekić, A.; Zeković, L. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl. Surf. Sci. 2013, 265, 226–233. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Petković, M.; Zeković, L. Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf. Coat. Technol. 2011, 206, 575–581. [Google Scholar] [CrossRef]
- Stojadinovic, S.; Vasilic, R.; Petkovic, M.; Belča, I.; Kasalica, B.; Perić, M.; Zeković, L. Luminescence during anodization of magnesium alloy AZ31. Electrochim. Acta 2012, 59, 354–359. [Google Scholar] [CrossRef]
- Hussein, R.O.; Northwood, D.O.; Nie, X. The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. J. Alloys Compd. 2012, 541, 41–48. [Google Scholar] [CrossRef]
- Hussein, R.O.; Nie, X.; Northwood, D.O. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim. Acta 2013, 112, 111–119. [Google Scholar] [CrossRef]
- Liu, R.; Wu, J.; Xue, W.; Qu, Y.; Yang, C.; Wang, B.; Wu, X. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy. Mater. Chem. Phys. 2014, 148, 284–292. [Google Scholar] [CrossRef]
- Kasalica, B.; Petković-Benazzouz, M.; Sarvan, M.; Belča, I.; Maksimović, B.; Misailović, B.; Popović, Z. Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales. Surf. Coat. Technol. 2020, 390, 125681. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Li, Z.; Xu, Y.; Gao, F.; Guo, L.; Zhu, J.; Li, G.; Xia, Y. Influence of Applied Frequency on Thermal Physical Properties of Coatings Prepared on Al and AlSi Alloys by Plasma Electrolytic Oxidation. Coatings 2021, 11, 1439. [Google Scholar] [CrossRef]
- Hariprasad, S.; Varma, A.; Saikiran, A.; Arun, S.; Parfenov, E.V.; Rameshbabu, N. Influence of pulse frequency on the morphological and corrosion characteristics of the plasma electrolytic oxidized ZM21 magnesium alloy. Mater. Today Proc. 2021, 39, 1456–1464. [Google Scholar] [CrossRef]
- Nikoomanzari, E.; Karbasi, M.; Melo, W.; Moris, H.; Babaei, K.; Giannakis, S.; Fattah-alhosseini, A. Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements. Chem. Eng. J. 2022, 441, 136003. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K.; Sreekanth, D.; Subrahmanyam, C. Surface morphology, corrosion resistance and in vitro bioactivity of P containing ZrO2 films formed on Zr by plasma electrolytic oxidation. J. Alloys Compd. 2013, 553, 324–332. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L.; Qu, Y.; Liu, R.; Wei, K.; Xue, W. Optical emission spectroscopy of plasma electrolytic oxidation process on 7075 aluminum alloy. Surf. Coat. Technol. 2017, 324, 18–25. [Google Scholar] [CrossRef]
- Jovović, J.; Stojadinović, S.; Šišović, N.M.; Konjević, N. Spectroscopic study of plasma during electrolytic oxidation of magnesium- and aluminium-alloy. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1928–1937. [Google Scholar] [CrossRef]
- Ji, S.; Weng, Y.; Wu, Z.; Ma, Z.; Tian, X.; Fu, R.K.; Lin, H.; Wu, G.; Chu, P.K.; Pan, F. Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy. J. Alloys Compd. 2017, 710, 452–459. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Raeissi, K.; Ashrafizadeh, F.; Simchen, F.; Hakimizad, A.; Santamaria, M.; Lampke, T. The importance of type of Ti-based additives on the PEO process and properties of Al2O3-TiO2 coating. Surf. Interfaces 2023, 36, 102523. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Imshinetskiy, I.M.; Nadaraia, K.V.; Gnedenkov, A.S.; Suchkov, S.N.; Opra, D.P.; Pustovalov, E.V.; Ustinov, A.Y.; Sinebryukhov, S.L.; Gnedenkov, S.V. Effect of TiO2 nanoparticles on the photocatalytic properties of PEO coatings on Mg alloy. J. Magnes. Alloys 2023, 11, 735–752. [Google Scholar] [CrossRef]
- Vargas-Villanueva, S.; Torres-Ceron, D.A.; Amaya-Roncancio, S.; Arellano-Ramírez, I.D.; Riva, J.S.; Restrepo-Parra, E. Study of the incorporation of S in TiO2/SO42− Coatings produced by PEO process through XPS and DFT. Appl. Surf. Sci. 2022, 599, 153811. [Google Scholar] [CrossRef]
Sample No. | Substrate | Processing Time (min) | Frequency (Hz) | Current Ratio (+/−) | Duty Cycle |
---|---|---|---|---|---|
#1 | Al/Ti Al~10 μm Ti~6 mm | 5 | 1400 | 0.9 | 50%/50% |
#2 | 10 | ||||
#3 | 20 | ||||
#4 | 35 | ||||
#5 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, G.; Xia, Y. Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate. Coatings 2023, 13, 1507. https://doi.org/10.3390/coatings13091507
Li G, Li G, Xia Y. Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate. Coatings. 2023; 13(9):1507. https://doi.org/10.3390/coatings13091507
Chicago/Turabian StyleLi, Guodong, Guang Li, and Yuan Xia. 2023. "Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate" Coatings 13, no. 9: 1507. https://doi.org/10.3390/coatings13091507
APA StyleLi, G., Li, G., & Xia, Y. (2023). Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate. Coatings, 13(9), 1507. https://doi.org/10.3390/coatings13091507