Research on the Corrosion Resistance of an Epoxy Resin-Based Self-Healing Propylene Glycol-Loaded Ethyl Cellulose Microcapsule Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Sample Preparation
2.3. Experimental Content
2.3.1. Preparation of Microcapsules
2.3.2. Preparation of Self-Healing Coatings
2.4. Testing and Analysis
2.4.1. Electrochemical Test
2.4.2. Scanning Electron Microscopy and X-ray Diffraction Spectroscopy
2.4.3. Microcapsules Particle Size and Macroscopic Morphology Analysis
2.4.4. Fourier Infrared Spectroscopy and Thermal Weight Loss Testing
3. Results and Discussion
3.1. Characterization of Microcapsules
3.1.1. Microstructure and Particle Size Distribution
3.1.2. Macroscopic Structure and Particle Dispersion
3.1.3. Chemical Structure of Microcapsules
3.1.4. Conversion Efficiency of TGA and Microcapsules
3.2. Characterization of Optimal Core-to-Wall Ratio of Microcapsules and Corrosion Resistance of Self-Healing Coatings
3.3. Characterization of Self-Healing Ability of Coating by Microcapsules with Different Mass Fraction Addition
3.4. Electrochemical Test Characterization of Self-Healing Coatings
3.4.1. Electrochemical Impedance Spectroscopy
3.4.2. Electrochemical Polarization Curve Graph Analysis
3.4.3. SEM Image and EDS Image of Self-Healing Coating
4. Conclusions
- Microcapsules containing the corrosion inhibitor propanetriol are added into the epoxy resin to form a round and smooth spherical structure, which is uniformly dispersed into the coating.
- The particle size of the propanetriol-loaded microcapsules was (150.424 ± 3.756) μm as observed by SEM, laser particle size tester, and 3D confocal microscopy.
- The results of TGA and FTIR show that propanetriol, as a corrosion inhibitor, was effectively encapsulated inside the capsule wall as a core material for release retardation when rupturing of the microcapsules occurred. The DTG curves of the microcapsules show that the capsule wall shell are loaded with about 12% of the printing agent.
- SEM images of the plane and cross-section of the self-healing coating show that the microcapsules are evenly distributed in the epoxy resin layer, and the incorporation of microcapsules makes the coating adhere more closely to the magnesium alloy substrate.
- The electrochemical experimental analysis shows that the microcapsules are successfully added into the epoxy resin coating. Glycerol, as a corrosion inhibitor, is able to be successfully released. It is adsorbed to the rupture site to form a hydrophobic coating layer for self-healing, which in turn attenuates the corrosion rate of the magnesium alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khisamov, R.; Shayakhmetov, R.; Yumaguzin, Y.M.; Kistanov, A.A. Work Function, Sputtering Yield and Microhardness of an Al-Mg Metal-Matrix Nanostructured Composite Obtained with High-Pressure Torsion. Coatings 2023, 13, 5007. [Google Scholar] [CrossRef]
- Tun, K.S.; Brendan, T.Y.S.; Tekumalla, S.Y.; Gupta, M.J. Development from Alloys to Nanocomposite for an Enhanced Mechanical and Ignition Response in Magnesium. Coatings 2021, 11, 1792. [Google Scholar] [CrossRef]
- Lei, C.; Di, M.; Zhao, Q.Z.; Yuan, D.H. Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Mater. Eng. 2022, 3, 723–745. [Google Scholar]
- Yang, Q.X.; Tabish MH, M.; Wang, J.B.; Zhao, J.M. Enhanced Corrosion Resistance of Layered Double Hydroxide coatings on Mg Alloy: The Key Role of Cationic Surfactant. Materials 2022, 15, 2028. [Google Scholar] [CrossRef]
- Wang, B.J.; Hou, J.Y.; Luan, J.Y.; Xu, D.K.; Sun, H.J.; Sun, J. The Corrosion Behaviors of an As-Rolled Mg-8Li (in wt.%) Alloy in Two Differently Concentrated NaCl Solutions. Coatings 2023, 12, 406. [Google Scholar] [CrossRef]
- Salsabila, A.L.; Pratama, A.Y.; Nurrochman, A.A.; Hermawan, H.D. Preparation of Tannic Acid/Hyaluronic Acid Coating to Improve the Corrosion Resistance of Implant Material Based on AZ31B Magnesium Alloy. Coatings 2023, 13, 494. [Google Scholar] [CrossRef]
- Li, T.L.; Zhao, Y.; Chen, M.F. Study on Enhancing the Corrosion Resistance and Photo-Thermal Antibacterial Properties of the Micro-Arc Oxidation Coating Fabricated on Medical Magnesium Alloy. Int. J. Mol. Sci. 2022, 23, 10708. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. Magnes. Alloys. 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Pargavi, B.S.L.; Dhanaji, T.U.; Dassani, S.J.; Somasundaram, M. Microstructural, Mechanical, and Corrosion Properties of AZXX Magnesium Alloy: A Review of Processing Methods. Coatings 2023, 13, 344. [Google Scholar]
- Xu, D.K.; Li, C.Q.; Wang, B.J.; Han, E.H. Effect of icosahedral phase on the crystallographic texture and mechanical anisotropy of duplex structured Mg-Li alloys. Mater. Des. 2015, 88, 88–97. [Google Scholar] [CrossRef]
- Chen, J.X.; Xu, Y.; Kolawole, S.F.D.; Wang, J.H.; Su, X.P.; Tian, L.I.; Yang, K. Systems, Properties, Surface Modification and Applications of Biodegradable Magnesium-Based Alloys: A Review. Materials 2022, 15, 5031. [Google Scholar] [CrossRef]
- Sun, W.T.; Bian, G.X.; Jia, L.I.; Pai, J.J.; Ye, Z.H.; Wang, N.; Qi, J.T.; Li, T.J. Study of Trivalent Chromium Conversion Coating Formation at Solution—Metal Interface. Metals 2023, 13, 93. [Google Scholar] [CrossRef]
- Rehman, Z.H.; Kim, J.S.; Churchill, D.G.; Koo, B.H. Tuning Corrosion Properties of the Bio-Inspired AZ-Series Mg Alloys Using Electrochemical Surface Treatment under Varying Experimental Regimes. Coatings 2022, 12, 1617. [Google Scholar] [CrossRef]
- Li, M.; Hao, H.; Zhang, A.; Song, Y.; Zhang, X. Effects of Nd on microstructure and mechanical properties of as-cast Mg-8Li-3Al alloy. J. Rare Earths 2012, 30, 492–496. [Google Scholar] [CrossRef]
- Rangaswamy, A.; Sudarsanam, P.; Benjaram, M. Rare earth doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures. Reddy J. High. Sch. Chem. 2015, 33, 1162–1169. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Bian, K.; Zhu, P. Preparation and characterization of nanostructured dibasic calcium phosphate coating on magnesium alloy wire. Mater. Lett. 2017, 209, 323–326. [Google Scholar] [CrossRef]
- Yang, L.H.; Jiang, Q.T.; Zheng, M.; Hou, B.; Li, Y. Corrosion behavior of Mg-8Li-3Zn-Al alloy in neutral 3.5% NaCl solution. J. Magnes. Alloy. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Dobkowska, A.; Adamczyk-Cieslak, B.; Mizera, J.; Kubásek, J.; Vojtěch, D. Corrosion Behaviour of Magnesium Lithium Alloys in NaCl Solution. Solid. State. Phenom. 2015, 3763, 87–90. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Zhou, Y.; Yan, F. The study of a phosphate conversion coating on magnesium alloy AZ91D: IV. Comparison of electrochemical behaviors in borate buffer and sodium chloride solutions. Int. J. Electrochem. Sci. 2019, 14, 11349–11357. [Google Scholar]
- Thirumalaikumarasamy, D.; Shanmugam, K.; Balasubramanian, V. Comparison of the corrosion behaviour of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution. J. Magnes. Alloy. 2014, 2, 36–49. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Liu, S.; You, Z.; Zhang, Z.; Zhao, T.; Zhang, X.; Wu, R. Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. Nanomaterials 2023, 13, 1219. [Google Scholar] [CrossRef]
- Liu, F.; Song, Y.W.; Shan, D.Y.; Han, E.H. Corrosion behavior of AZ31 magnesium alloy in simulated acid rain solution. Trans. Nonferrous Met. Soc. China 2010, 20, 638–642. [Google Scholar] [CrossRef]
- Ma, X.C.; Jin, S.Y.; Wu, R.Z.; Wang, J.X.; Wang, G.X.; Krit, B.; Betsofen, S. Corrosion behavior of Mg-Li alloys: A review. Trans. Nonferrous Met. Soc. China 2021, 31, 3228–3254. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, J.; Zhao, X.Y.; Cheng, X.Q.; Jiang, S.M.; Zhang, Q.F. Effects of Al-Mg on the Microstructure and Phase Distribution of Zn-Al-Mg Coatings. Coatings 2023, 13, 46. [Google Scholar] [CrossRef]
- Stojadinovic, S.; Radic, N.N.; Vasilic, R.K. ZnO Particles Modified MgAl Coatings with Improved Photocatalytic Activity Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy in Aluminate Electrolyte. Coatings 2023, 12, 1503. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Moradi-Alavian, S.; Esrafifili, M.D.; Kazempour, A. Hybrid sol-gel coatings based on silanesamino acids for corrosion protection of AZ91 magnesium alloy: Electrochemical and DFT insights. Prog. Org. Coating 2019, 131, 191–202. [Google Scholar] [CrossRef]
- Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M.; Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative conversion coatings to chromate for the protection of magnesium alloys. Corros. Sci. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Liang, F.; Shen, Y.; Pei, C.; Qiu, B.; Lei, J.; Sun, D. Microstructure evolution and corrosion resistance of multi interfaces AlTiAlN nanocomposite ficoatings on AZ91D magnesium alloy. Surf. Coat. Technol. 2019, 357, 83–92. [Google Scholar] [CrossRef]
- Ernens, D.; Rooij, M.B.; Pasaribu, H.R.; Riet, E.J.; Haaften, W.M.; Schipper, D.J. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings. Tribol. Int. 2018, 118, 474–483. [Google Scholar] [CrossRef]
- Hu, L.; Gao, B.; Xu, N.; Sun, Y.; Zhang, Y.; Xing, P.F. Effect of Cerium and Magnesium on Surface Microcracks of Al–20Si Alloys Induced by High-Current Pulsed Electron Beam. Coatings 2022, 12, 61. [Google Scholar] [CrossRef]
- Li, C.Q.; He, Y.B.; Huang, H.P. Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg-Li alloys. J. Magnes. Alloy. 2021, 9, 569–580. [Google Scholar] [CrossRef]
- Xu, W.; Birbilis, N.; Sha, G.; Wang, Y.; Daniels, J.; Xiao, Y.; Ferry, M. A high-specifific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 2015, 14, 1229–1235. [Google Scholar] [CrossRef]
- Zhiheng, G. Corrosion characteristics and protection technology of magnesium alloy. Surf. Technol. 2016, 45, 169–177. [Google Scholar]
- Van, P.N.; Gupta, M.; Moon, S. Enhanced corrosion performance of magnesium pHospHate conversion coating on AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 1087–1095. [Google Scholar]
- Gnedenkov, A.S.; Filonina, V.S.; Sinebryukhov, S.L.; Gnedenkov, S.V. A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor-Containing Coatings. Molecules 2023, 28, 2538. [Google Scholar] [CrossRef] [PubMed]
- White, S.R.; Sottors, N.R.; Geubelle, P.H. Autonomic healing of polymer composites. J. Nat. 2011, 21, 6822–6829. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Zhao, S.J.; Yang, M. Structurally stable slow-release microcapsules stabilized by self-assembly pectin-chitosan-collagen in aqueous two-phase system. J. Food Hydrocoll. 2022, 260, 55–64. [Google Scholar]
- Cunha, D.; Leal, D.A.; Santos, L.R.L. pH-sensitive micro-capsules based on biopolymers for active corrosion protection of carbon steel at different pH. Surf. Coat. 2020, 67, 1143–1153. [Google Scholar]
- Chan, K.L.; Xu, C.Y.; Zhou, J.L. Multifunctional fabric coatings with slow-release fragrance and UV resistant properties from EC/silica hybrid microcapsules. Carbohydr. Polym. 2020, 38, 317–325. [Google Scholar]
- Ahmad, M.; Qureshi, S.; Maqsood, S. Micro-encapsulation of folic acid using horse chestnut starch and β-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions. Food Hydrocoll. 2017, 66, 154–160. [Google Scholar]
Microcapsules | Ecorr/V | icorr/(A/cm2) |
---|---|---|
Uncoated | −1.125 | 1.562 × 10−5 |
Pure epoxy resin coating | −1.014 | 1.854 × 10−5 |
5 wt.% epoxy-based coating of microcapsules | −0.931 | 1.538 × 10−6 |
Epoxy-based coating of 10 wt.% microcapsules | −0.721 | 1.86 × 10−7 |
Epoxy-based coating of 20 wt.% microcapsules | −0.903 | 1.507 × 10−6 |
Microcapsules | Rs Ω·cm2 | CPE1 Ω−1·S−n·cm2 | n1 | R1 Ω·cm2 | CPE2 Ω−1·S−n·cm2 | n2 | R2 Ω·cm2 | R1 + R2 Ω·cm2 |
---|---|---|---|---|---|---|---|---|
Uncoated | 19.92 | 8.32 × 10−6 | 0.87 | 8110 | 4.8 × 10−4 | 0.61 | 15,890 | 24,000 |
Pure epoxy resin coating | 12.13 | 8.94 × 10−6 | 0.89 | 26,450 | 2.3 × 10−4 | 0.85 | 13,150 | 39,600 |
5 wt.% epoxy-based coating of microcapsules | 11.2 | 8.44 × 10−6 | 0.89 | 14,080 | 1.7 × 10−4 | 0.73 | 39,820 | 53,900 |
Epoxy-based coating of 10 wt.% microcapsules | 9.8 | 1.33 × 10−5 | 0.82 | 13,520 | 2.3 × 10−4 | 0.85 | 68,900 | 82,420 |
Epoxy-based coating of 20 wt.% microcapsules | 13.08 | 2.49 × 10−5 | 0.84 | 28,900 | 4.4 × 10−4 | 0.62 | 24,180 | 53,080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, L.; Xu, Y.; Lei, Q.; Bing, J.; Zhang, T. Research on the Corrosion Resistance of an Epoxy Resin-Based Self-Healing Propylene Glycol-Loaded Ethyl Cellulose Microcapsule Coating. Coatings 2023, 13, 1514. https://doi.org/10.3390/coatings13091514
Zhang S, Liu L, Xu Y, Lei Q, Bing J, Zhang T. Research on the Corrosion Resistance of an Epoxy Resin-Based Self-Healing Propylene Glycol-Loaded Ethyl Cellulose Microcapsule Coating. Coatings. 2023; 13(9):1514. https://doi.org/10.3390/coatings13091514
Chicago/Turabian StyleZhang, Shudi, Linkun Liu, Yuheng Xu, Quanda Lei, Jiahui Bing, and Tao Zhang. 2023. "Research on the Corrosion Resistance of an Epoxy Resin-Based Self-Healing Propylene Glycol-Loaded Ethyl Cellulose Microcapsule Coating" Coatings 13, no. 9: 1514. https://doi.org/10.3390/coatings13091514
APA StyleZhang, S., Liu, L., Xu, Y., Lei, Q., Bing, J., & Zhang, T. (2023). Research on the Corrosion Resistance of an Epoxy Resin-Based Self-Healing Propylene Glycol-Loaded Ethyl Cellulose Microcapsule Coating. Coatings, 13(9), 1514. https://doi.org/10.3390/coatings13091514