A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Hot-Dip Aluminizing
2.3. Solid Carburization
2.4. Corrosion Experiments
2.5. Analytical Characterization
3. Results
3.1. The Microstructures of the Hot-Dip Aluminum/Carburizing Composite Coating
3.2. Molten Salt Corrosion Kinetics and Optical Images
3.3. Cross-Sectional Morphologies and Surface Analysis of the Hot-Dip Aluminum Coating after Molten Salt Corrosion
3.4. Cross-Sectional Morphologies and Surface Analysis of Hot-Dip Aluminum/Carburizing Composite Coatings after Molten Salt Corrosion
4. Discussion
4.1. The Microstructures of the Hot-Dip Aluminum Coating
4.2. The Microstructures of the Hot-Dip Aluminum/Carburizing Composite Coating
5. Conclusions
- (1)
- Both hot-dip aluminum coating and hot-dip aluminum/carburizing coating can effectively improve the corrosion resistance of sodium chloride molten salt. However, the hot-dip aluminum coating exhibits superior corrosion resistance in NaCl salt at 810 °C compared with the hot-dip aluminum/carburizing coating.
- (2)
- For the hot-dip aluminum coating, after molten salt corrosion for 120h, the outer layer mainly forms a mixture of TiAl3, Al2O3, and TiO2, while the inner layer forms a layered structure of TiAl2/TiAl/Ti3Al. The mixture of TiAl3 and Al2O3 in the outer layer plays a good protective role. In addition, the inner TiAl2/TiAl/Ti3Al was well bonded to the substrate and was smooth without cracking.
- (3)
- For the hot dip-aluminum/carburizing composite coating, carbon exists in the coating as free carbon atoms, TiC, and Ti3AlC. During the process of molten salt corrosion, C is oxidized into CO2 gas, leading to the formation of high-concentration pores in the coating, which becomes a channel for molten salt ions and oxygen penetration. In addition, TiC and Ti3AlC promote the formation of non-protective oxide TiO2, resulting in a deterioration in the corrosion resistance and a self-catalytic corrosion mechanism.
- (4)
- The results provide a basic understanding on the corrosion behavior of hot-dip aluminum/carburizing composite coatings in molten salt environments. In addition, the identified corrosion mechanism of the coating lays a good foundation for improving the marine environmental resistance of titanium alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sealy, C. Stable molten salts hold the key to solar storage. Mater. Today 2021, 48, 4–5. [Google Scholar] [CrossRef]
- Delpech, S.; Cabet, C.; Slim, C.; Picard, G.S. Molten fluorides for nuclear applications. Mater. Today 2010, 13, 34–41. [Google Scholar] [CrossRef]
- Myers, P.D.; Goswami, D.Y. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 2016, 109, 889–900. [Google Scholar] [CrossRef]
- Indacochea, J.E.; Smith, J.L.; Litko, K.R.; Karell, E.J.; Rarez, A.G. High-Temperature Oxidation and Corrosion of Structural Materials in Molten Chlorides. Oxid. Met. 2001, 55, 1–16. [Google Scholar] [CrossRef]
- Hupa, E.; Vainio, E.; Yrjas, P.; Engblom, M.; Hupa, M. Corrosion of superheater materials by alkali chloride salt mixtures—The role of the presence of molten phase. Fuel 2023, 344, 128063. [Google Scholar] [CrossRef]
- Gong, Q.; Hanke, A.; Kessel, F.; Bonk, A.; Bauer, T.; Ding, W. Molten chloride salt technology for next-generation CSP plants: Selection of cold tank structural material utilizing corrosion control at 500 °C. Sol. Energy Mater. Sol. Cells 2023, 253, 112233. [Google Scholar] [CrossRef]
- Huang, L.; An, Q.; Geng, L.; Wang, S.; Jiang, S.; Cui, X.; Zhang, R.; Sun, F.; Jiao, Y.; Chen, X.; et al. Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Adv. Mater. 2021, 33, e2000688. [Google Scholar] [CrossRef]
- Li, B.; Zhou, H.; Liu, J.; Kang, C. Multiaxial fatigue damage and reliability assessment of aero-engine compressor blades made of TC4 titanium alloy. Aerosp. Sci. Technol. 2021, 119, 107107. [Google Scholar] [CrossRef]
- Singh, G.; Ramamurty, U. Reprint: Boron modified titanium alloys. Prog. Mater. Sci. 2021, 120, 100815. [Google Scholar] [CrossRef]
- Sun, J.; Qi, M.; Zhang, J.; Li, X.; Wang, H.; Ma, Y.; Xu, D.; Lei, J.; Yang, R. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys. J. Mater. Sci. Technol. 2021, 71, 98–108. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Yao, Z.; Marck, M. NaCl-induced hot corrosion of a titanium aluminide alloy. Mater. Sci. Eng. A 1995, 192–193, 6. [Google Scholar] [CrossRef]
- Ciszak, C.; Popa, I.; Brossard, J.-M.; Monceau, D.; Chevalier, S. NaCl induced corrosion of Ti-6Al-4V alloy at high temperature. Corros. Sci. 2016, 110, 91–104. [Google Scholar] [CrossRef]
- Abhinay, T.; Shveta, S.; Richika, G.; Humira, A.; Ashish, K. Anti-Corrosive Potential of the Sustainable Corrosion Inhibitors Based on Biomass Waste: A Review on Preceding and Perspective Research. J. Phys. Conf. Ser. 2022, 2267, 012079. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, B.; Ma, Y.; Gong, S. Inter-phase selective corrosion of γ-TiAl alloy in molten salt environment at high temperature. Prog. Nat. Sci. Mater. Int. 2011, 21, 322–329. [Google Scholar] [CrossRef]
- Garip, Y.; Ozdemir, O. Corrosion behavior of the resistance sintered TiAl based intermetallics induced by two different molten salt mixture. Corros. Sci. 2020, 174, 108819. [Google Scholar] [CrossRef]
- Fan, L.; Liu, L.; Cui, Y.; Cao, M.; Yu, Z.; Oguzie, E.E.; Li, Y.; Wang, F. Effect of streaming water vapor on the corrosion behavior of Ti60 alloy under a solid NaCl deposit in water vapor at 600 °C. Corros. Sci. 2019, 160, 108177. [Google Scholar] [CrossRef]
- Li, R.; Liu, L.; Cui, Y.; Liu, R.; Fan, L.; Cao, M.; Yu, Z.; Chen, Z.; Wang, Q.; Wang, F. Corrosion behavior of Ti60 alloy under continuous NaCl solution spraying at 600 °C. J. Mater. Sci. Technol. 2022, 124, 86–101. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, W.; Liang, J. Molten salt vapour corrosion of Ti–Al–Ag intermetallics. Intermetallics 2004, 12, 539–544. [Google Scholar] [CrossRef]
- Abhinay, T.; Savaş, K.; Ashish, K. Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys. Appl. Sci. 2023, 13, 730. [Google Scholar] [CrossRef]
- Kumar, N.; Choubey, V.K. Effect of WC-Co and 86WC-10Co-4Cr coatings on type-II hot corrosion behaviour & microstructure characteristics at 650 degree celsius. Surf. Coat. Technol. 2023, 469, 129812. [Google Scholar] [CrossRef]
- Du, D.; Gao, Z.; Cao, Z.; Li, J.; Guo, W.; Liu, W. NaCl-induced hot-corrosion behavior and mechanism of TiSiCN/Ag nanocomposite coatings by arc ion plating. Corros. Sci. 2023, 222, 111406. [Google Scholar] [CrossRef]
- Rubacha, K.; Godlewska, E.; Mars, K. Behaviour of a silicon-rich coating on Ti-46Al-8Ta (at.%) in hot-corrosion environments. Corros. Sci. 2017, 118, 158–167. [Google Scholar] [CrossRef]
- Wu, L.-K.; Wu, J.-J.; Wu, W.-Y.; Yan, H.-J.; Jiang, M.-Y.; Cao, F.-H. Hot corrosion behavior of electrodeposited SiO2 coating on TiAl alloy. Corros. Sci. 2020, 174, 108827. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, Y.; Wang, Y.; Niu, Y.; Xin, L.; Li, Y.; Su, J.; Zhu, S.; Wang, F. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion. Acta Metall. Sin. -Engl. Lett. 2021, 34, 1434–1446. [Google Scholar] [CrossRef]
- Ahmed, F.S.; El-Zomor, M.A.; Ghazala, M.S.A.; Elshaer, R.N. Effect of oxide layers formed by thermal oxidation on mechanical properties and NaCl-induced hot corrosion behavior of TC21 Ti-alloy. Sci. Rep. 2022, 12, 19265. [Google Scholar] [CrossRef]
- Kossenko, A.; Lugovskoy, S.; Astashina, N.; Lugovskoy, A.; Zinigrad, M. Effect of time on the formation of hydroxyapatite in PEO process with hydrothermal treatment of the Ti-6Al-4V alloy. Glass Phys. Chem. 2013, 39, 639–642. [Google Scholar] [CrossRef]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Gofer, Y.; Borodianskiy, K.; Sobolev, A. Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte. Materials 2022, 15, 7374. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, F.; Wu, W. Effect of Al2O3 and enamel coatings on 900 °C oxidation and hot corrosion behaviors of gamma-TiAl. Mater. Sci. Eng. A 2000, 276, 70–75. [Google Scholar] [CrossRef]
- Hu, Y.-T.; Zheng, L.; Yan, H.-J.; Wu, L.-K.; Lin, X.-J.; Cao, F.-H.; Jiang, M.-Y. Improving hot corrosion resistance of aluminized TiAl alloy by anodization and pre-oxidation. Trans. Nonferrous Met. Soc. China 2021, 31, 193–206. [Google Scholar] [CrossRef]
- Mingming, Z.; Yu, L.; Min, F.; Chengyang, J.; Yaqi, Z.; Yahui, W.; Yipeng, F.; Lijie, M.; Fuhui, W. Corrosion behaviour of aluminide coatings on Ti-based alloy in the marine environment at high temperature. Corros. Sci. 2022, 209, 110750. [Google Scholar] [CrossRef]
- Yang, Y.; Akihiro, K.; Weizhong, H.; Huolin, X.; Ju, L. Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature. Nano Lett. 2018, 18, 2492–2497. [Google Scholar] [CrossRef]
- Xu, Z.; Rong, J.; Yu, X.; Kun, M.; Zhan, Z.; Wang, X.; Zhang, Y. The Interface Structure of High-Temperature Oxidation–Resistant Aluminum-Based Coatings on Titanium Billet Surface. JOM 2017, 69, 1848–1852. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys Fundamentals and Application; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Peng, Y.P.; Mao, Y.L.; Pang, C.J.; Lu, L.Y. Effect of hot-dip aluminizing on the oxidation resistance of Ti–6Al–4V alloy at high temperatures. Corros. Sci. 2012, 55, 187–193. [Google Scholar] [CrossRef]
- Shahzad, A.; Zadorozhnyy, V.Y.; Pavlov, M.D.; Zheleznyi, M.V.; Chirkov, A.M.; Zagrebin, D.S.; Semenov, D.V.; Khasenova, R.S.; Kaloshkin, S.D. Deposition of the Ti-Al coatings on different metallic substrates by mechanical alloying and subsequent laser treatment. J. Alloys Compd. 2018, 731, 1295–1302. [Google Scholar] [CrossRef]
- Huilgol, P.; Udupa, K.R.; Bhat, K.U. Metastable microstructures at the interface between AISI 321 steel and molten aluminum during hot-dip aluminizing. Surf. Coat. Technol. 2018, 348, 22–30. [Google Scholar] [CrossRef]
- Shao, Z.; Yang, H.; Zhang, S.; Liu, W.; Xiao, Z.; Zheng, M. A dense Fe-Al/Al2O3 coating as tritium permeation barrier on CLAM steel by hot-dipping aluminizing. Surf. Coat. Technol. 2022, 440, 128491. [Google Scholar] [CrossRef]
- Shibli, S.M.A.; Manu, R.; Dilimon, V.S. Effect of nickel-rich barrier layer on improvement of hot-dip zinc coating. Appl. Surf. Sci. 2005, 245, 179–185. [Google Scholar] [CrossRef]
- Patel, P.; Jamnapara, N.I.; Zala, A.; Kahar, S.D. Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere. Surf. Coat. Technol. 2020, 385, 125323. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, J.; Yan, J.; Fan, H.; Wang, J. Oxidation resistance and corrosion behavior of hot-dip aluminized coatings on commercial-purity titanium. Surf. Coat. Technol. 2011, 206, 1277–1282. [Google Scholar] [CrossRef]
- Jeng, S.-C. Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800 °C. Surf. Coat. Technol. 2013, 235, 867–874. [Google Scholar] [CrossRef]
- Duan, H.-Q.; Han, Y.-F.; Lü, W.-J.; Mao, J.-W.; Wang, L.-Q.; Zhang, D. Effect of solid carburization on surface microstructure and hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti-6Al-4V composite. Trans. Nonferrous Met. Soc. China 2016, 26, 1871–1877. [Google Scholar] [CrossRef]
- Liao, C.; Yang, J.; He, Y.; Ming, X. Electrochemical corrosion behavior of the carburized porous TiAl alloy. J. Alloys Compd. 2015, 619, 221–227. [Google Scholar] [CrossRef]
- Yao, T.; Liu, Y.; Liu, B.; Song, M.; Zhao, K.; Zhang, W.; He, Y. Influence of carburization on oxidation behavior of High Nb contained TiAl alloy. Surf. Coat. Technol. 2015, 277, 210–215. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, R.Y.; Zhang, J.S.; Guo, J.T. Corrosion behavior of intermetallic compound of TiAl–5Nb in molten LiCl–Li2O. Mater. Lett. 2005, 59, 2052–2058. [Google Scholar] [CrossRef]
- Wohlert, S.; Bormann, R. Phase selection governed by different growth velocities in the early stages of the Ti/Al phase reaction. J. Appl. Phys. 1999, 85, 825–832. [Google Scholar] [CrossRef]
- Hsu, I.C.; Wu, S.K.; Lin, R.Y. A study of aluminum cladding on Ti50Al50 intermetallics by liquid aluminizing. Mater. Chem. Phys. 1997, 49, 184–190. [Google Scholar] [CrossRef]
- Jiang, S.; Li, S.; Zhang, L. Microstructure evolution of Al–Ti liquid–solid interface. Trans. Nonferrous Met. Soc. China 2013, 23, 3545–3552. [Google Scholar] [CrossRef]
- Alam, M.Z.; Das, D.K. Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy. Corros. Sci. 2009, 51, 1405–1412. [Google Scholar] [CrossRef]
- Wang, Z.; Li, F.; Hu, X.; He, W.; Liu, Z.; Tan, Y. Preparation of Ti-Al-Si Gradient Coating Based on Silicon Concentration Gradient and Added-Ce. Coatings 2022, 12, 683. [Google Scholar] [CrossRef]
- Ciszak, C.; Abdallah, I.; Popa, I.; Brossard, J.-M.; Vande Put, A.; Monceau, D.; Chevalier, S. Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature. Corros. Sci. 2020, 172, 108611. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, G.; Li, Z.; Ruan, H.; Yuan, J.; Wang, L.; Ke, P.; Wang, A. Corrosion mechanism of Ti2AlC MAX phase coatings under the synergistic effects of water vapor and solid NaCl at 600 °C. Corros. Sci. 2021, 192, 109788. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Zhou, D.; Pu, J.; Yu, M.; Guo, W. A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C. Corros. Sci. 2020, 174, 108794. [Google Scholar] [CrossRef]
- Chang, L.M.; Liu, J.H.; Zhang, R.J. Corrosion behaviour of electrodeposited Ni/Al2O3 composite coating covered with a NaCl salt film at 800 degrees C. Mater. Corros. 2011, 62, 920–925. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Wu, Y.; Chen, C.; Li, Y.; Zhou, W.; Ren, X. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding. Corros. Sci. 2022, 201, 110271. [Google Scholar] [CrossRef]
- Kurzweil, P. Electrochemical Double-Layer Capacitors: Carbon Materials. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsvier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Liu, R.D.; Jiang, S.M.; Yu, H.J.; Gong, J.; Sun, C. Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy. Corros. Sci. 2016, 104, 162–172. [Google Scholar] [CrossRef]
- Li, X.T.; An, Q.; Huang, L.J.; Zhang, R.; Chen, X.; Chen, R.; Sun, F.B.; Geng, L. The hot corrosion behaviors and mechanisms of hot-dipped Ti-Al-Si coatings on TiBw/Ti6Al4V composite against NaCl and Na2SO4. J. Alloys Compd. 2022, 921, 166151. [Google Scholar] [CrossRef]
- Xi, Y.; Lu, J.; Wang, Z.; He, L.; Wang, F. Effect of nanocrystallization on hot corrosion resistance of Ti-48Al-8Cr-2Ag alloy in molten salts. Trans. Nonferrous Met. Soc. China 2006, 16, 511–516. [Google Scholar] [CrossRef]
Al | Sn | Ta | W | Zr | Mo | Nd | Si | C | Ti |
---|---|---|---|---|---|---|---|---|---|
5.9 | 4.0 | 2.0 | 1.0 | 3.5 | 0.3 | 0.3 | 0.35 | 0.05 | Bal. |
Point | Ti | Al | C | O | Ba | Possible Phase |
---|---|---|---|---|---|---|
A | 12.38 | 2.62 | 22.20 | 51.20 | 11.51 | C + BaTiO3 |
B | 6.85 | 24.72 | 15.31 | 53.12 | / | Al2O3 + TiO2 + TiC + Al4C3 |
C | 15.94 | 60.62 | / | 25.45 | / | Al2O3 + Ti-Al |
D | 29.87 | 70.13 | / | / | / | TiAl3 |
E | 33.19 | 66.81 | / | / | / | TiAl2 |
F | 49.39 | 50.61 | / | / | / | TiAl |
G | 70.52 | 29.48 | / | / | / | Ti3Al |
H | 83.71 | 16.29 | / | / | / | Ti3Al + Ti |
Point | Ti | Al | O | Possible Phase |
---|---|---|---|---|
A | 7.58 | 38.41 | 54.01 | Al2O3 + Ti-Al |
B | 24.64 | 55.54 | 31.34 | TiAl3 + Al2O3 + TiO2 |
C | 35.67 | 64.33 | / | TiAl2 |
D | 51.78 | 48.22 | / | TiAl |
E | 78.81 | 21.19 | / | Ti3Al |
Point | Ti | Al | C | O | Cl | Na | Ca | Ba |
---|---|---|---|---|---|---|---|---|
A | 11.89 | 3.22 | 8.46 | 65.37 | / | / | 1.64 | 9.42 |
B | 24.68 | 17.94 | / | 36.70 | / | 1.19 | 19.49 | / |
C | 0.64 | 29.58 | 7.36 | 61.37 | 0.30 | 0.61 | / | 0.14 |
D | 4.63 | 25.58 | 4.07 | 60.90 | / | 0.94 | / | 3.88 |
Point | Ti | Al | O | Cl | Na | Possible Phase |
---|---|---|---|---|---|---|
A | 21.96 | 15.58 | 60.71 | / | 1.75 | Al2O3 + TiO2 |
B | 19.47 | 10.39 | 67.10 | / | 3.05 | TiO2 + Na2TiO3 |
C | 18.21 | 30.96 | 50.83 | / | / | Al2O3 + TiO2 |
D | 9.50 | 29.00 | 60.20 | 0.64 | 0.66 | Al2O3 + TiAl2 |
E | 34.33 | 65.57 | / | / | / | TiAl2 |
F | 46.85 | 53.15 | / | / | / | TiAl |
G | 80.36 | 19.64 | / | / | / | Ti3Al |
Point | Ti | Al | C | O | Possible Phase |
---|---|---|---|---|---|
A | 4.87 | 32.24 | 15.27 | 47.62 | Al2O3 + C |
B | 24.54 | 65.42 | 10.02 | / | TiAl3 |
C | 37.77 | 62.23 | / | / | TiAl2 |
D | 49.96 | 43.40 | 6.64 | / | TiAl + C |
E | 77.82 | 22.18 | / | / | Ti3Al |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, F. A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy. Coatings 2023, 13, 1516. https://doi.org/10.3390/coatings13091516
Wang J, Li F. A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy. Coatings. 2023; 13(9):1516. https://doi.org/10.3390/coatings13091516
Chicago/Turabian StyleWang, Jiayi, and Faguo Li. 2023. "A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy" Coatings 13, no. 9: 1516. https://doi.org/10.3390/coatings13091516
APA StyleWang, J., & Li, F. (2023). A Study on the High-Temperature Molten Salt Corrosion Resistance of Hot-Dip Aluminum/Carburizing Composite Coating on Ti65 Titanium Alloy. Coatings, 13(9), 1516. https://doi.org/10.3390/coatings13091516