Study on the Microstructure and Properties of FeCoNiCrAl High-Entropy Alloy Coating Prepared by Laser Cladding-Remelting
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Laser Cladding and Laser Remelting Process
2.3. Characterization
3. Results
3.1. Pahse
3.2. Microstructure Characterization
3.3. Microhardness and Wear Resistance of Coatings
3.4. Corrosion Test
3.5. SVET Test
4. Discussion
4.1. Phase Formation and Evolution
4.2. Effect of Laser Remelting on the Wear Resistance of Coatings
4.3. Effect of Laser Remelting on the Corrosion Resistance of Coatings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Shang, X.; Wang, Z.; He, F.; Wang, J.; Li, J.; Yu, J. The intrinsic mechanism of corrosion resistance for FCC high entropy alloys. Sci. China Technol. Sci. 2018, 61, 189–196. [Google Scholar] [CrossRef]
- Tian, L.-H.; Xiong, W.; Liu, C.; Lu, S.; Fu, M. Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J. Mater. Eng. Perform. 2016, 25, 5513–5521. [Google Scholar] [CrossRef]
- Mu, Y.; Jia, Y.; Xu, L.; Jia, Y.; Tan, X.; Yi, J.; Wang, G.; Liaw, P. Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying. Mater. Res. Lett. 2019, 7, 312–319. [Google Scholar] [CrossRef]
- Li, L.-C.; Li, M.-X.; Liu, M.; Sun, B.-Y.; Wang, C.; Huo, J.-T.; Wang, W.-H.; Liu, Y.-H. Enhanced oxidation resistance of MoTaTiCrAl high entropy alloys by removal of Al. Sci. China Mater. 2021, 64, 223–231. [Google Scholar] [CrossRef]
- Chunhai, L.; Guo, P.; Wei, Z.; Chengjie, Y.; Xuejun, C.; Chang, C.; Yongzhong, J. Preparation of FeCrNiMoCu High-entropy Alloy Coating by Magnetron Co-sputtering and Its Microstructure. Rare Met. Mater. Eng. 2018, 47, 1578–1582. [Google Scholar]
- Lehtonen, J.; Koivuluoto, H.; Ge, Y.; Juselius, A.; Hannula, S.-P. Cold gas spraying of a high-entropy CrFeNiMn equiatomic alloy. Coatings 2020, 10, 53. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Z.; Zhang, B.; Yu, Y.; Wang, Z.; Zhang, X.; Lu, B. Microstructure and Properties of Al2O3-13wt.% TiO2-Reinforced CoCrFeMnNi High-Entropy Alloy Composite Coatings Prepared by Plasma Spraying. J. Therm. Spray Technol. 2021, 30, 772–786. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, Y.; Hong, S.; Cheng, J.; Qiao, L.; Cheng, J.; Zhu, S. Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel (HVOF) sprayed AlCoCrFeNi high-entropy alloy coating in different solutions. Surf. Coat. Technol. 2021, 409, 126899. [Google Scholar] [CrossRef]
- Aliyu, A.; Rekha, M.; Srivastava, C. Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings. Philos. Mag. 2019, 99, 718–735. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Liu, H.; Zhang, Y.; Li, H.; Shi, C.; Liu, P.; Yan, D. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: A review. J. Manuf. Process. 2022, 76, 397–411. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, L.; Wang, Y.; Lyu, F.; Zhan, X. Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. J. Alloys Compd. 2022, 903, 163905. [Google Scholar] [CrossRef]
- Sypniewska, J.; Szkodo, M. Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review. Coatings 2022, 12, 1371. [Google Scholar] [CrossRef]
- Ghosh, A.; Wu, W.; Sahu, B.P.; Wang, J.; Misra, A. Enabling plastic co-deformation of disparate phases in a laser rapid solidified Sr-modified Al–Si eutectic through partial-dislocation-mediated-plasticity in Si. Mater. Sci. Eng. A 2023, 885, 145648. [Google Scholar] [CrossRef]
- Wu, G.; Yin, Y.; Zhang, S.; Wang, Y.; Xiang, Y.; Li, L.; Yao, J. Effect of laser texturing on the antiwear properties of micro-arc oxidation coating formed on Ti-6Al-4V. Surf. Coat. Technol. 2023, 453, 129114. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Peng, Y.; Zhang, M.; Liu, S.; Liu, Y. Microstructures and wear resistance of FeCoCrNi-Mo high entropy alloy/diamond composite coatings by high speed laser cladding. Coatings 2020, 10, 300. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, N.; Yin, S. Strengthening behavior of AlCoCrFeNi (TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting. J. Mater. Sci. Technol. 2022, 121, 163–173. [Google Scholar] [CrossRef]
- Chen, L.; He, D.; Han, B.; Guo, Z.; Zhang, L.; Lu, L.; Wang, X.; Tan, Z.; Zhou, Z. Effect of laser remelting on wear behavior of HVOF-sprayed FeCrCoNiTiAl0. 6 high entropy alloy coating. Appl. Sci. 2020, 10, 7211. [Google Scholar] [CrossRef]
- Al-Sayed, S.R.; Abdelfatah, A. Corrosion behavior of a laser surface-treated alpha–beta 6/4 titanium alloy. Met. Lography Microstruct. Anal. 2020, 9, 553–560. [Google Scholar] [CrossRef]
- Liu, B.-W.; Mi, G.-Y.; Wang, C.-M. Reoxidation process and corrosion behavior of TA15 alloy by laser ablation. Rare Met. 2021, 40, 865–876. [Google Scholar] [CrossRef]
- Fu, X.; Schuh, C.A.; Olivetti, E.A. Materials selection considerations for high entropy alloys. Scr. Mater. 2017, 138, 145–150. [Google Scholar] [CrossRef]
- Jadhav, N.; Gelling, V.J. The use of localized electrochemical techniques for corrosion studies. J. Electrochem. Soc. 2019, 166, C3461. [Google Scholar] [CrossRef]
- Chong, Z.; Sun, Y.; Cheng, W.; Huang, L.; Han, C.; Ma, X.; Meng, A. Laser remelting induces grain refinement and properties enhancement in high-speed laser cladding AlCoCrFeNi high-entropy alloy coatings. Intermetallics 2022, 150, 107686. [Google Scholar] [CrossRef]
- Wei, J.; Dong, J.; Zhou, Y.; He, X.; Wang, C.; Ke, W. Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution. Mater. Charact. 2018, 139, 401–410. [Google Scholar] [CrossRef]
- He, X.; Song, R.; Kong, D. Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation. Appl. Surf. Sci. 2019, 497, 143703. [Google Scholar] [CrossRef]
- Mi, C.; Tian, Z.; Cao, C.; Wang, Z.; Mao, C.; Xu, S. Novel microwave-assisted solvothermal synthesis of NaYF4: Yb, Er upcon version nanoparticles and their application in cancer cell imaging. Langmuir 2011, 27, 14632–14637. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Sheng, G.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar]
- Yuan, W.; Li, R.; Chen, Z.; Gu, J.; Tian, Y. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings. Surf. Coat. Technol. 2021, 405, 126582. [Google Scholar] [CrossRef]
- Pawlowski, L.; Smurov, I. Modeling of high power laser interaction with APS deposited FeCrTiC. Surf. Coat. Technol. 2002, 151, 308–315. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, N.; Yu, H.; Hao, D.; Ma, Y. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surf. Coat. Technol. 2020, 402, 126328. [Google Scholar] [CrossRef]
Sample | FCC | A2 | B2 |
---|---|---|---|
Cladding coating | 3.581 | 2.872 | 2.871 |
Remelting coating | 2.875 | 2.873 |
Fe | Co | Ni | Cr | Al | |
---|---|---|---|---|---|
A | 39.77 | 14.96 | 13.55 | 14.69 | 17.03 |
B | 32.50 | 18.13 | 12.74 | 16.31 | 20.31 |
C | 31.65 | 17.46 | 17.39 | 14.65 | 18.85 |
Fe | Co | Ni | Cr | Al | |
---|---|---|---|---|---|
Cladding coating | 33.21 | 19.12 | 18.1 | 17.01 | 12.56 |
Remelting coating | 26.02 | 18.03 | 19.63 | 16.01 | 20.31 |
Q235 | Cladding Coating | Remelting Coating | |
---|---|---|---|
Rs | 24.37 | 6.105 | 15.17 |
Y0 | 4.01 × 10−4 | 9.199 × 10−5 | 2.65 |
n | 0.72 | 0.7498 | 0.8424 |
Rcorr | 2343 | 91,840 | 59,540 |
/(μA·cm−2) | |
---|---|
Cladding coating | 0.52 |
Remelting coating | 0.63 |
Alloy | ΔHmix (kJ·mol−1) | ΔSmix (J·K−1 mol−1) | Tm (K) | Ω | δ (%) | VEC |
---|---|---|---|---|---|---|
Cladding coating | −7.61 | 12.45 | 1745.26 | 2.86 | 3.92 | 7.81 |
Remelting coating | −9.92 | 12.82 | 1715.32 | 2.216 | 4.81 | 7.12 |
/(μA·cm−2) | |
---|---|
Cladding coating (crack area) | 1.257 |
Cladding coating | 0.424 |
Remelting coating | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, T.; Zou, W.; He, J.; Ju, X.; Zheng, C. Study on the Microstructure and Properties of FeCoNiCrAl High-Entropy Alloy Coating Prepared by Laser Cladding-Remelting. Coatings 2024, 14, 49. https://doi.org/10.3390/coatings14010049
Lv T, Zou W, He J, Ju X, Zheng C. Study on the Microstructure and Properties of FeCoNiCrAl High-Entropy Alloy Coating Prepared by Laser Cladding-Remelting. Coatings. 2024; 14(1):49. https://doi.org/10.3390/coatings14010049
Chicago/Turabian StyleLv, Tianyi, Wenkai Zou, Jiaqi He, Xiang Ju, and Chuanbo Zheng. 2024. "Study on the Microstructure and Properties of FeCoNiCrAl High-Entropy Alloy Coating Prepared by Laser Cladding-Remelting" Coatings 14, no. 1: 49. https://doi.org/10.3390/coatings14010049
APA StyleLv, T., Zou, W., He, J., Ju, X., & Zheng, C. (2024). Study on the Microstructure and Properties of FeCoNiCrAl High-Entropy Alloy Coating Prepared by Laser Cladding-Remelting. Coatings, 14(1), 49. https://doi.org/10.3390/coatings14010049