Effects of Gd/Nd Ratio and Aging Treatment on Wear Behavior of Mg-Nd-Gd-Sr-Zn-Zr Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alloy Preparation
2.2. Testing Methods
3. Results
3.1. Microstructure and Microhardness
3.2. Friction and Wear Properties
4. Discussion
5. Conclusions
- With the variation of the Gd/Nd ratio in the alloy, the friction coefficient of the extruded alloy first increases and then decreases, but the friction coefficient of T5 alloys does not change significantly. The friction coefficient of the alloy after T5 treatment is slightly reduced.
- For the as-aged alloys, the wear rate of the alloy decreases first and then increases with the increase in the Gd/Nd ratio. The alloy with a Gd/Nd ratio of 1/3 after T5 aging treatment has the lowest wear rate and the best wear resistance.
- The wear mechanisms of the E-alloys and T5-alloys are composed of abrasive wear, oxidation wear, and delamination wear. But the wear mechanisms of T5-Alloy 1 are mainly abrasive wear and oxidation wear, which may be related to its lowest wear rate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Huang, H.; Wang, C.; Sun, J.P.; Chen, X.B. Recent advances in LPSO-containing wrought magnesium alloys: Relationships between processing, microstructure, and mechanical properties. JOM 2019, 71, 3314–3327. [Google Scholar] [CrossRef]
- Song, J.F.; She, J.; Chen, D.L.; Pan, F.S. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Zhang, X.B.; Ba, Z.X.; Wang, Z.Z.; Wu, Y.J.; Xue, Y.J. Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy. Mater. Lett. 2016, 163, 250–253. [Google Scholar] [CrossRef]
- Chen, H.M.; Han, D.; Cui, H.W.; Zhang, L.; Jin, Y.X. Microstructures and properties of As-cast rare earth magnesium alloy with LPSO phase. Mater. Res. Express 2019, 6, 965a. [Google Scholar] [CrossRef]
- Chen, L.W.; Zhao, Y.H.; Li, M.X.; Li, L.M.; Hou, L.F.; Hou, H. Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mat. Sci. Eng. A-Struct. 2021, 804, 140793. [Google Scholar] [CrossRef]
- Ramalingam, V.V.; Ramasamy, P.; Kovukkal, M.D.; Myilsamy, G. Research and development in magnesium alloys for industrial and biomedical applications: A review. Met. Mater. -Int. 2020, 26, 409–430. [Google Scholar] [CrossRef]
- Han, G.S.; Chen, D.; Chen, G.; Huang, J.H. Development of non-flammable high strength extruded Mg-Al-Ca-Mn alloys with high Ca/Al ratio. J. Mater. Sci. Technol. 2018, 34, 2063–2068. [Google Scholar] [CrossRef]
- Patel, S.M.; Rao, V.J. Effect of Mn on microstructure, mechanical properties, and corrosion behaviour of Mg-Ni alloys. Eng. Res. Express 2022, 4, 45035. [Google Scholar] [CrossRef]
- Estrin, Y.; Nene, S.S.; Kashyap, B.P.; Prabhu, N.; Al-Samman, T. New hot rolled Mg-4Li-1Ca alloy: A potential candidate for automotive and biodegradable implant applications. Mater. Lett. 2016, 173, 252–256. [Google Scholar] [CrossRef]
- Mao, B.; Zhang, X.; Menezes, P.L.; Liao, Y.L. Anisotropic microstructure evolution of an AZ31B magnesium alloy subjected to dry sliding and its effects on friction and wear performance. Materialia 2019, 8, 100444. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, S.; Xu, C.S.; Yang, X.J.; Lu, D.P. Enhancing wear resistance of Mg–Zn–Gd alloy by cryogenic treatment. Mater. Lett. 2012, 76, 201–204. [Google Scholar] [CrossRef]
- Cao, L.J.; Wang, Q.D.; Wu, Y.J.; Ye, B. Friction and wear behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) alloy with oil lubricant. Rare Metals 2013, 32, 453–458. [Google Scholar] [CrossRef]
- Karakulak, E.; Küüker, Y.B. Effect of Si addition on microstructure and wear properties of Mg-Sn as-cast alloys. J. Magnes. Alloys 2018, 6, 384–389. [Google Scholar] [CrossRef]
- Zafari, A.; Ghasemi, H.M.; Mahmudi, R. Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 2013, 303, 98–108. [Google Scholar] [CrossRef]
- Patil, A.; Bontha, S.; Ramesh, M.R. Effect of ECAP on sliding wear behaviour of Mg-Zn-Gd-Zr alloy. Mater. Today Proc. 2020, 20, 97–102. [Google Scholar] [CrossRef]
- Sravya, T.; Sankaranarayanan, S.; Abdulhakim, A.; Manoj, G. Mechanical properties of magnesium-rare earth alloy systems: A review. Metals 2015, 5, 1–39. [Google Scholar]
- Xie, J.S.; Zhang, J.H.; You, Z.H.; Liu, S.J.; Feng, J. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys 2020, 9, 41–56. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.B.; Liu, Q.H.; Yang, S.J.; Wang, Z.Z. Effects of load on dry sliding wear behavior of Mg–Gd–Zn–Zr alloys. J. Mater. Sci. Technol. 2017, 33, 645–651. [Google Scholar] [CrossRef]
- Effects of lanthanum and cerium mixed rare earth metal on abrasion and corrosion resistance of AM60 magnesium alloy. Rare Metal. Mat. Eng. 2015, 44, 521–526. [CrossRef]
- Jiang, J.; Bi, G.L.; Zhao, L.; Li, R.G.; Lian, J.S.; Jiang, Z.H. Dry sliding wear behavior of extruded Mg-Sn-Yb alloy. J. Rare Earths 2015, 33, 77–85. [Google Scholar] [CrossRef]
- Li, N.; Yan, H. The effects of rare earth Pr and heat treatment on the wear properties of AZ91 alloy. Crystals 2018, 8, 256. [Google Scholar] [CrossRef]
- Karuppusamy, P.; Lingadurai, K.; Sivananth, V. Effects of T4 and T6 heat treatments on the wear behaviour of WC-reinforced Mg alloy matrix composite. Trans. Indian Inst. Met. 2020, 73, 521–530. [Google Scholar] [CrossRef]
- Hu, M.L.; Wang, Q.D.; Chen, C.J.; Yin, D.D.; Ding, W.J.; Ji, Z.S. Dry sliding wear behaviour of Mg-10Gd-3Y-0.4Zr alloy. Mater. Des. 2012, 42, 223–229. [Google Scholar] [CrossRef]
- Zhang, X.B.; Xue, Y.J.; Wang, Z.Z.; He, X.C.; Wang, Q. Microstructure, mechanicaland corrosion properties of Mg-(4-x)Nd-xGd-Sr-Zn-Zr biomagnesium alloys. Acta Metall. Sin. 2014, 50, 979–988. [Google Scholar]
- Zhang, X.B.; Sun, W.; Xue, Y.J.; Wang, Z.Z.; Wang, Q. Effect of Gd/Nd ratio on mechanical and biocorrosion properties of as-extruded Mg–Nd–Gd–Sr–Zn–Zr alloys. Mater. Res. Innov. 2015, 19, S236–S239. [Google Scholar] [CrossRef]
- Azzeddine, H.; Hanna, A.; Dakhouche, A.; Rabahi, L.; Baudin, T. Impact of rare-earth elements on the corrosion performance of binary magnesium alloys. J. Alloys Compd. 2020, 829, 154569. [Google Scholar] [CrossRef]
- Dinesh, P.; Manivannan, S.; Babu, S.P.K.; Natarajan, S. Effect of Nd on the microstructure and corrosion behaviour of Mg-9Li-3Al magnesium alloy in 3.5 wt.% NaCl solution. Mater. Today Proc. 2019, 15, 126–131. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, X.M.; Zeng, X.K.; Liu, M.; Jiang, X.; Leng, Y.X. Hard yet tough and self-lubricating (CuNiTiNbCr)Cx high-entropy nanocomposite films: Effects of carbon content on structure and properties. J. Mater. Sci. Technol. 2024, 173, 20–30. [Google Scholar] [CrossRef]
- Hu, M.L.; Wang, Q.D.; Ji, Z.S.; Xu, H.Y.; Xin, M.D.; Ma, G.R. Wear behavior of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 406–413. [Google Scholar] [CrossRef]
- Ramesh, S.; Anne, G.; Nayaka, H.S.; Sahu, S.; Ramesh, M.R. Investigation of dry sliding wear properties of multi-directional forged Mg–Zn alloys. J. Magnes. Alloys 2019, 7, 444–455. [Google Scholar] [CrossRef]
- Banijamali, S.M.; Palizdar, Y.; Najafi, S.; Sheikhani, A.; Torkamani, H. Effect of Ce addition on the tribological behavior of ZK60 Mg alloy. Met. Mater. -Int. 2020, 27, 2732–2742. [Google Scholar] [CrossRef]
- Luo, S.F.; Yang, G.Y.; Qin, H.; Xiao, L.; Jie, W.Q. Substitution Effects of Gd with Nd on Microstructures and Mechanical Properties of Mg-10Gd-0.4Zr Alloys. Adv. Eng. Mater. 2020, 22, 1901576. [Google Scholar] [CrossRef]
- Selvan, S.A.; Ramanathan, S. Dry sliding wear behavior of as-cast ZE41A magnesium alloy. Mater. Des. 2010, 31, 1930–1936. [Google Scholar] [CrossRef]
- Zhao, P.B.; Zhu, J.P.; Yang, K.J.; Li, M.L.; Shao, G.; Lu, H.X.; Ma, Z.; Wang, H.L.; He, J.L. Outstanding wear resistance of plasma sprayed high-entropy monoboride composite coating by inducing phase structural cooperative mechanism. Appl. Surf. Sci. 2023, 616, 156516. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.W.; Zhu, X.C.; Shirooyeh, M.; Langdon, T.G. Dry sliding wear of an AZ31 magnesium alloy processed by equal-channel angular pressing. J. Mater. Sci. 2013, 48, 4117–4127. [Google Scholar] [CrossRef]
- Seenuvasaperumal, P.; Doi, K.; Basha, D.A.; Singh, A.; Elayaperumal, A.; Tsuchiya, K. Wear behavior of HPT processed UFG AZ31B magnesium alloy. Mater. Lett. 2018, 227, 194–198. [Google Scholar] [CrossRef]
- Ajith Kumar, K.K.; Pillai, U.T.S.; Pai, B.C.; Chakraborty, M. Dry sliding wear behaviour of Mg-Si alloys. Wear 2013, 303, 56–64. [Google Scholar] [CrossRef]
Element Content/wt.% | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Mg | 67.35 | 93.31 | 93.05 | 83.69 |
Nd | 27.76 | 1.95 | 3.42 | 11.99 |
Gd | 2.76 | 1.45 | 1.73 | 1.66 |
Sr | / | 1.03 | / | 1.64 |
Zn | 1.65 | 1.05 | 0.87 | 1.02 |
Zr | / | 1.2 | 0.94 | / |
Element Content/wt.% | ||||||
---|---|---|---|---|---|---|
Mg | Nd | Gd | Sr | Zn | O | |
1 | Bal. | 2.45 | 3.19 | 1.39 | 0.57 | 9.40 |
2 | Bal. | 2.14 | 2.68 | 0.97 | 0.38 | 16.56 |
3 | Bal. | 4.20 | 0.56 | 0.81 | 0.59 | 12.39 |
4 | Bal. | 4.33 | 2.37 | 1.35 | 1.46 | 9.80 |
5 | Bal. | 4.88 | 1.25 | 0.8 | 1.2 | 8.15 |
6 | Bal. | 3.48 | 1.55 | 0.71 | 0.98 | 13.95 |
7 | Bal. | 2.82 | 3.32 | 0.28 | 0.71 | 10.95 |
8 | Bal. | 2.26 | 4.3 | 1.14 | 0.97 | 11.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, R.; Jia, Y. Effects of Gd/Nd Ratio and Aging Treatment on Wear Behavior of Mg-Nd-Gd-Sr-Zn-Zr Alloys. Coatings 2024, 14, 7. https://doi.org/10.3390/coatings14010007
Wang R, Wang R, Jia Y. Effects of Gd/Nd Ratio and Aging Treatment on Wear Behavior of Mg-Nd-Gd-Sr-Zn-Zr Alloys. Coatings. 2024; 14(1):7. https://doi.org/10.3390/coatings14010007
Chicago/Turabian StyleWang, Ruotian, Rongxiang Wang, and Yongqiang Jia. 2024. "Effects of Gd/Nd Ratio and Aging Treatment on Wear Behavior of Mg-Nd-Gd-Sr-Zn-Zr Alloys" Coatings 14, no. 1: 7. https://doi.org/10.3390/coatings14010007
APA StyleWang, R., Wang, R., & Jia, Y. (2024). Effects of Gd/Nd Ratio and Aging Treatment on Wear Behavior of Mg-Nd-Gd-Sr-Zn-Zr Alloys. Coatings, 14(1), 7. https://doi.org/10.3390/coatings14010007