Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. USP Treatment and Characterization Methods
3. Results
3.1. Effect of USP on Grain Size
3.2. Effect of USP on Grain Orientation
4. Discussion
4.1. Analysis of Grain Refinement Mechanism
4.2. Grain Plasticity and Orientation Analysis
5. Conclusions
- During the USP process, the plastic deformation of the surface layer of superalloys is accompanied by changes in grain size and orientation. The random impact of the spheres on the surface area promotes grain refinement and grain rotation, enhancing the randomness of grain orientations, reducing the texture strength and the proportion of “soft” orientation distribution;
- The USP treatment induces the formation of dislocation pile-up, where multiple dislocation sources are activated, releasing a series of dislocations. These dislocations accumulate and arrange themselves in a non-uniform manner within the barriers, with a denser arrangement closer to the barriers;
- The equilibrium of the dislocation pile-up is governed by the balance between the externally applied shear stress and the forces exerted by other dislocations. The position of each dislocation within the pile-up is proportional to the total length of the pile-up. The number of dislocations within a pile-up is directly proportional to the externally applied shear stress and the distance between the dislocation source and the barriers. To sustain dislocation proliferation, an increase in the externally applied shear stress provided by USP is necessary. This externally applied shear stress plays a crucial role in the evolution of dislocation pile-ups into dislocation cells and subsequently leads to grain refinement and plastic deformation in the surface layer of the alloy;
- The USP treatment has a significant impact on the distribution of dislocations in superalloys. The understanding of dislocation pile-up behavior and the relationship between externally applied shear stress, pile-up characteristics, and grain refinement is essential for optimizing the USP process and achieving the desired material properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoll, I.; Helm, D.; Polanetzki, H.; Wagner, L. Ultrasonic shot peening (USP) on Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo aero engine components. ICSP-11 2011. Available online: https://www.shotpeener.com/library/pdf/2011062.pdf (accessed on 28 October 2024).
- Kong, M.; Zang, T.; Wang, Z.; Zhu, L.; Zheng, H.; Gao, S.; Ngwangwa, H.M. Effects of constrained groove pressing and temperature-assisted ultrasonic shot peening on microstructure and mechanical properties of a two-phase Mg–Li alloy. J. Mater. Res. Technol. 2023, 23, 1947–1967. [Google Scholar] [CrossRef]
- Kumar, S.; Chattopadhyay, K.; Singh, V. Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy. J. Alloys Compd. 2017, 724, 187–197. [Google Scholar] [CrossRef]
- Sabelkin, V.; Martinez, S.; Mall, S.; Sathish, S.; Blodgett, M. Effects of shot-peening intensity on fretting fatigue crack-initiation behaviour of Ti–6Al–4V. Fatigue Fract. Eng. Mater. Struct. 2005, 28, 321–332. [Google Scholar] [CrossRef]
- Sanchez, A.; You, C.; Leering, M.; Glaser, D.; Furfari, D.; Fitzpatrick, M.; Wharton, J.; Reed, P. Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651. Int. J. Fatigue 2021, 143, 106025. [Google Scholar] [CrossRef]
- Totten, G. Fatigue crack propagation. Adv. Mater. Process. 2008, 166, 39–42. Available online: https://link.gale.com/apps/doc/A179283708/AONE?u=anon~58e5c6bd&sid=googleScholar&xid=ab27401c (accessed on 28 October 2024).
- Chang, C.A. (100) metal alloy films containing body-centered cubic and face-centered cubic metals: Relation between structures and lattice spacings. J. Appl. Phys. 1992, 72, 4463–4465. [Google Scholar] [CrossRef]
- Szczerba, M.; Kopacz, S.; Szczerba, M. A study on crystal plasticity of face-centered cubic structures induced by deformation twinning. Acta Mater. 2020, 197, 146–162. [Google Scholar] [CrossRef]
- Lennon, A.; Ramesh, K. The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 2004, 20, 269–290. [Google Scholar] [CrossRef]
- Mahbod, M.; Asgari, M.; Mittelstedt, C. Architected functionally graded porous lattice structures for optimized elastic-plastic behavior. Proc. Inst. Mech. Eng. Part L 2020, 234, 1099–1116. [Google Scholar] [CrossRef]
- Goto, M.; Knowles, D.M. Initiation and propagation behaviour of microcracks in Ni-base superalloy Udimet 720 Li. Eng. Fract. Mech. 1998, 60, 1–18. [Google Scholar] [CrossRef]
- Miao, J.; Pollock, T.M.; Jones, J.W. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater. 2012, 60, 2840–2854. [Google Scholar] [CrossRef]
- Tian, S.; Zhu, X.; Wu, J.; Yu, H.; Shu, D.; Qian, B. Influence of temperature on stacking fault energy and creep mechanism of a single crystal nickel-based superalloy. J. Mater. Sci. Technol. 2016, 32, 790–798. [Google Scholar] [CrossRef]
- León-Cázares, F.D.; Schlütter, R.; Monni, F.; Hardy, M.C.; Rae, C.M. Nucleation of superlattice intrinsic stacking faults via cross-slip in nickel-based superalloys. Acta Mater. 2022, 241, 118372. [Google Scholar] [CrossRef]
- Jiménez Amores, M. Fatigue Growth of Microstructurally Short Cracks in Ni-Based Superalloys. Ph.D. Thesis, Universidad Carlos III de Madrid, Madrid, Spain, 2020. [Google Scholar]
- Chan, K.S. Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 2010, 32, 1428–1447. [Google Scholar] [CrossRef]
- Génin, R.; Pichon, L.; Guitton, A.; Drouet, M.; Grosdidier, T. The effect of prior ultrasonic shot peening treatment on the low-temperature plasma nitriding of a metastable β-Ti alloy. In Proceedings of the 15th World Conference on Titanium, Edinburgh, UK, 12–16 June 2023. [Google Scholar]
- Liu, S.; Kim, Y.; Jung, J.; Bae, S.; Jeong, S.; Shin, K. Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys. Materials 2023, 16, 1802. [Google Scholar] [CrossRef] [PubMed]
- Pour-Ali, S.; Kiani-Rashid, A.-R.; Babakhani, A.; Virtanen, S.; Allieta, M. Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: A TEM, FE-SEM and GI-XRD study. Surf. Coat. Technol. 2018, 334, 461–470. [Google Scholar] [CrossRef]
- Yue, X.; Hu, S.; Wang, X.; Liu, Y.; Yin, F.; Hua, L. Understanding the nanostructure evolution and the mechanical strengthening of the M50 bearing steel during ultrasonic shot peening. Mater. Sci. Eng. A 2022, 836, 142721. [Google Scholar] [CrossRef]
- Tomé, C.; Necker, C.; Lebensohn, R. Mechanical anisotropy and grain interaction in recrystallized aluminum. Metall. Mater. Trans. A 2002, 33, 2635–2648. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, L.; Yang, W.; Zeng, Y.; Lian, Y.; Yue, Z. A comprehensive study of the anisotropic tensile properties of laser additive manufactured Ni-based superalloy after heat treatment. Int. J. Plast. 2022, 148, 103147. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Astaraee, A.H.; Sgarbazzini, S.; Bandini, M.; Guagliano, M. Application of gradient severe shot peening as a novel mechanical surface treatment on fatigue behavior of additively manufactured AlSi10Mg. Mater. Sci. Eng. A 2023, 881, 145397. [Google Scholar] [CrossRef]
- Breumier, S. Methodology for Shot-Peening Induced Intragranular Residual Stress Prediction. Ph.D. Thesis, Ecole Polytechnique, Montreal, QC, Canada, 2021. [Google Scholar]
- Tao, X.; Gao, Y. Effects of wet shot peening on microstructures and mechanical properties of a 2060-T8 aluminum-lithium alloy. Mater. Sci. Eng. A 2022, 832, 142436. [Google Scholar] [CrossRef]
- Kovacı, H.; Bozkurt, Y.B.; Yetim, A.F.; Aslan, M.; Çelik, A. The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel. Surf. Coat. Technol. 2019, 360, 78–86. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, C.; Xu, Z.; Zhan, K.; Ji, V. Experimental study on macro-and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening. Surf. Coat. Technol. 2019, 359, 511–519. [Google Scholar] [CrossRef]
- Marteau, J.; Bigerelle, M. Relation between surface hardening and roughness induced by ultrasonic shot peening. Tribol. Int. 2015, 83, 105–113. [Google Scholar] [CrossRef]
- Yue, X.; Wang, F.; Yin, F.; Hua, L.; Wang, J. Understanding the thermal stability and friction behavior of ultrasonic shot peening-introduced gradient nanostructured M50 bearing steel. Surf. Coat. Technol. 2024, 482, 130725. [Google Scholar] [CrossRef]
- Qin, Z.; Li, B.; Chen, T.; Chen, C.; Chen, R.; Ma, H.; Xue, H.; Yao, C.; Tan, L. Comparative study of the effects of conventional shot peening and ultrasonic shot peening on very high cycle fatigue properties of GH4169 superalloy. Int. J. Fatigue 2023, 175, 107799. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Liu, Y. Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature. Results Phys. 2018, 11, 452–460. [Google Scholar] [CrossRef]
- Yin, F.; Zhang, X.; Chen, F.; Hu, S.; Ming, K.; Zhao, J.; Xie, L.; Liu, Y.; Hua, L.; Wang, J. Understanding the microstructure refinement and mechanical strengthening of dual-phase high entropy alloy during ultrasonic shot peening. Mater. Des. 2023, 227, 111771. [Google Scholar] [CrossRef]
- Dwivedi, P.K.; Sivateja, C.; Rai, A.K.; Ganesh, P.; Basu, A.; Dutta, K. A comparative assessment of the effects of laser shock peening and ultrasonic shot peening on surface integrity and ratcheting fatigue performance of HSLA steel. Int. J. Fatigue 2023, 176, 107902. [Google Scholar] [CrossRef]
- Chen, Y.; Du, J.; Deng, S.; Tian, L.; Hu, K. Effect of ultrasonic shot peening duration on the microstructure and mechanical properties of CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 2023, 934, 168023. [Google Scholar] [CrossRef]
- Zhang, C.; Song, W.; Li, F.; Zhao, X.; Wang, Y.; Xiao, G. Microstructure and corrosion properties of Ti-6Al-4V alloy by ultrasonic shot peening. Int. J. Electrochem. Sci. 2015, 10, 9167–9178. [Google Scholar] [CrossRef]
- Xinling, M.; Wei, W.; Wei, Y. Simulation for surface self-nanocrystallization under shot peening. Acta Mech. Sin. 2003, 19, 172–180. [Google Scholar] [CrossRef]
- Li, J.S.; Gao, W.D.; Cao, Y.; Huang, Z.W.; Gao, B.; Mao, Q.Z.; Li, Y.S. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening. Adv. Eng. Mater. 2018, 20, 1800402. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Hu, Z.; Chen, T.; Susmel, L.; Wei, B. The synergetic effects of shot peening and laser-shot peening on the microstructural evolution and fatigue performance of a medium carbon steel. Int. J. Fatigue 2023, 166, 107246. [Google Scholar] [CrossRef]
- Slawik, S.; Bernarding, S.; Lasagni, F.; Navarro, C.; Perinan, A.; Boby, F.; Migot-Choux, S.; Dominguez, J.; Muecklich, F. Microstructural analysis of selective laser melted Ti6Al4V modified by laser peening and shot peening for enhanced fatigue characteristics. Mater. Charact. 2021, 173, 110935. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.; Eskandari, M.; Szpunar, J. Effect of arisen dislocation density and texture components during cold rolling and annealing treatments on hydrogen induced cracking susceptibility in pipeline steel. J. Mater. Res. 2016, 31, 3390–3400. [Google Scholar] [CrossRef]
Co | Cr | Mo | W | Si | P | Al | Ti | Nb | Ni |
---|---|---|---|---|---|---|---|---|---|
15.00 | 11.05 | 4.60 | 3.10 | <0.002 | <0.006 | 3.80 | 2.80 | 3.35 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Cai, J.; Zhang, L.; Pan, Y.; Wu, H. Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy. Coatings 2024, 14, 1382. https://doi.org/10.3390/coatings14111382
Shi X, Cai J, Zhang L, Pan Y, Wu H. Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy. Coatings. 2024; 14(11):1382. https://doi.org/10.3390/coatings14111382
Chicago/Turabian StyleShi, Xihui, Jin Cai, Liwen Zhang, Yuliang Pan, and Hao Wu. 2024. "Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy" Coatings 14, no. 11: 1382. https://doi.org/10.3390/coatings14111382
APA StyleShi, X., Cai, J., Zhang, L., Pan, Y., & Wu, H. (2024). Analysis of Influence of Ultrasonic Shot Peening on Surface Plastic Behavior of Superalloy. Coatings, 14(11), 1382. https://doi.org/10.3390/coatings14111382