Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving
Abstract
:1. Introduction
2. Experimental Details
2.1. Coating Preparation Process
2.2. Characterization of Coating Properties
3. Results and Discussion
3.1. Microstructure of Coatings
3.2. Tribological Properties of Coatings
3.3. Corrosion Resistance of Coatings in Artificial Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamberlin, R.E.; Guzas, E.L.; Ambrico, J.M. Energy balance during underwater implosion of ductile metallic cylinders. J. Acoust. Soc. Am. 2014, 136, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Dynamic implosion of underwater cylindrical shells: Experiments and computations. Int. J. Solids Struct. 2013, 50, 2943–2961. [CrossRef]
- Study of implosion of carbon/epoxy composite hollow cylinders using 3-D digital image correlation. Compos. Struct. 2015, 119, 272–286. [CrossRef]
- Gupta, S.; Matos, H.; LeBlanc, J.M.; Shukla, A. Shock initiated instabilities in underwater cylindrical structures. J. Mech. Phys. Solids 2016, 95, 188–212. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.L.; Li, X.; Guo, P.; Ke, P.; Wang, A. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application. ACS Appl. Mater. Interfaces 2018, 10, 13187–13198. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guan, Z.; Cheng, Q.; Guo, W.; Tang, M.; Liu, Y. Development of a friction test apparatus for simulating the ultra-high pressure environment of the deep ocean. Wear 2020, 452, 203294. [Google Scholar] [CrossRef]
- Shan, L.; Wang, Y.; Zhang, Y.; Zhang, Q.; Xue, Q. Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater. Wear 2016, 362, 97–104. [Google Scholar] [CrossRef]
- Zhou, F.; Adachi, K.; Kato, K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various, environments. Wear 2006, 261, 301–310. [Google Scholar] [CrossRef]
- Zuo, B.; Yu, L.; Xu, J. The new nanocapsule structure and cyclic tribological properties of Mo2N/Ag/Si3N4 nanocomposite film. Ceram. Int. 2023, 49, 38982–38994. [Google Scholar] [CrossRef]
- Zuo, B.; Yu, L.; Xu, J. Effect of Ag content on friction and wear properties of TiCN/Ag films in different service environments. Vacuum 2023, 212, 112029. [Google Scholar] [CrossRef]
- Han, H.; Wu, T.; Zhao, L. Stable and durable TiBN-Cu/polyalphaolefin(PAO) composite lubrication system: Enhanced lubrication performance through PAO physicochemical adsorption. Surf. Coat. Technol. 2024, 489, 131093. [Google Scholar]
- Neidhardt, J.; O’Sullivan, M.; Reiter, A.E.; Rechberger, W.; Grogger, W.; Mitterer, C. Structure property performance relations of high-rate reactive arc-evaporated Ti-B-N nanocomposite coatings. Surf. Coat. Technol. 2006, 201, 2553–2559. [Google Scholar] [CrossRef]
- Bian, S.; Yu, L.; Xu, J.; Xu, J. Impact of Ag on the microstructure and tribological behaviors of adaptive ZrMoN-Ag composite lubricating films. J. Mater. Res. Technol. 2022, 19, 2346–2355. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Wood, R.J.; Wang, S.C.; Xue, Q. Fabrication of CrAlN Nanocomposite Films with High Hardness and Excellent Anti-wear Performance for Gear Application. Surf. Coat. Technol. 2010, 204, 3517–3524. [Google Scholar] [CrossRef]
- Ning, L.; Veldhuis, S.C.; Yamamoto, K. Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating. Int. J. Mach. Tools Manuf. 2008, 48, 656–665. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Gasem, Z.M.; Madhan Kumar, A. Corrosion resistance behavior of single-layer cathodic arc PVD nitride-base coatings in 1M HCl and 3.5 pct NaCl solutions. Metall. Mater. Trans. B 2017, 48, 1321–1332. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Guo, P.; Sun, L.; Ke, P.; Wang, A. Research Progress on Nitrogen/Carbon-Based Wear-Resistant Coatings via Physical Vapor Deposition in Marine Environments. Surf. Technol. 2021, 50, 44–56. [Google Scholar]
- Yu, L.; Luo, H.; Bian, J.; Ju, H.; Xu, J. Research on microstructure, mechanical and tribological properties of Cr-Ti-BN films. Coatings 2017, 7, 137. [Google Scholar] [CrossRef]
- Tian, C.; Xiang, Y.; Zou, C.; Yu, Y.; Abudouwufu, T.; Yang, B.; Fu, D. Mechanical and Tribological Properties of CrWN/MoN Nano-Multilayer Coatings Deposited by Cathodic Arc Ion Plating. Coatings 2024, 14, 367. [Google Scholar] [CrossRef]
- Li, M.; Yu, Y.; Zou, C.; Tian, C.; Xiang, Y. Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment. Coatings 2023, 13, 1837. [Google Scholar] [CrossRef]
- Kainz, C.; Schalk, N.; Tkadletz, M.; Mitterer, C.; Czettl, C. Microstructure and mechanical properties of CVD TiN/TiBN multilayer coatings. Surf. Coat. Technol. 2019, 370, 311–319. [Google Scholar] [CrossRef]
- Anusha, T.V.V.; Chukwuike, V.I.; Shtansky, D.V.; Subramanian, B. Biocompatibility study of nanocomposite titanium boron nitride (TiBN) thin films for orthopedic implant applications. Surf. Coat. Technol. 2021, 410, 126968. [Google Scholar]
- Yu, Y.; Li, M.; Zou, C.; Tian, C.; Xiang, Y. Effect of CrYN/TiBN coating on friction performance and corrosion resistance of 316 stainless steel in artificial seawater. Mater. Res. Express 2023, 10, 036506. [Google Scholar] [CrossRef]
- Landolt, D.; Mischler, S.; Stemp, M. Electroc-hemical Methods in Tribocorrosion: A Critical Appr-aisal. Electrochim. Acta 2001, 46, 3913–3929. [Google Scholar] [CrossRef]
- Li, W.; Sun, X.; Wang, Y.; Li, J.; Wang, C.; Sui, Y.; Lan, J. Study on the Corrosion and Wear Performance of Multi-Interface CrN/CrAlN Coatings in Seawater Environment. Surf. Technol. 2022, 51, 69–78. [Google Scholar]
- Aihua, L.; Jianxin, D.; Haibing, C.; Yangyang, C.; Jun, Z. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012, 31, 82–88. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Yan, S.J.; Han, B.; Yang, B.; Lin, B.Z.; Zhang, Z.D.; Ai, Z.W.; Pelenovich, V.O.; Fu, D.J. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating. Appl. Surf. Sci. 2015, 351, 1116–1121. [Google Scholar] [CrossRef]
- Chen, M.; Wu, D.; Chen, W.; Zhang, S. Structural optimisation and electrochemical behaviour of AlCrN coatings. Thin Solid Film. 2016, 612, 400–406. [Google Scholar] [CrossRef]
- Wang, L.; Sun, R.; Shan, L.; Wang, Y. Study on the Corrosion and Wear Behavior of CrAlN Coatings in Seawater Environment. Tribol. Lett. 2017, 37, 639–646. [Google Scholar]
- Kok, Y.N.; Akid, R.; Hovsepian, P.E. Tribocorrosion Testing of Stainless Steel (SS) and PVD Coated SS Using a Modified Scanning Reference Electrode Technique. Wear 2005, 259, 1472–1481. [Google Scholar] [CrossRef]
- Wang, J.Z.; Yan, F.Y.; Xue, Q.J. Tribological behavior of various polymer materials in seawater. Sci. Bull. 2009, 54, 3558–3564. [Google Scholar] [CrossRef]
- Yan, X.P.; Bai, X.Q.; Yuan, C.Q. A discussion on the connotation, research scope and progress of marine tribology. J. Mech. Eng. 2013, 49, 95–103. [Google Scholar] [CrossRef]
- Song, X.X.; Ouyang, J.J.; Zhao, J.Y.; Hu, D.K.; Chen, Y.J. Comparative study on the corrosion resistance of Cr/CrN and Cr/CrN/CrAlN coatings prepared by magnetron sputtering. Surf. Technol. 2020, 49, 272–280. [Google Scholar]
- Liu, E.Y.; Zeng, Z.X.; Zhao, W.J. Research progress on integrated technology for corrosion wear resistance of metallic materials in seawater environments. Surf. Technol. 2017, 46, 149–157. [Google Scholar]
- Xiang, Y.; Wang, Z.; Liu, G.; Liang, F.; Zou, C.; Yu, Y.; Tian, C. Preparation and wear-corrosion performance study of single-layer/multi-layer TiN-based coatings on the surface of 304 stainless steel. Surf. Technol. 2022, 51, 121–128. [Google Scholar]
Coatings | Base Pressure / | Experimental Pressure /Pa | Temperature /°C | Substrate Bias /V | TiB2 Arc Current /A | CrAl Arc Current /A | Rotation | Coating Time/min |
---|---|---|---|---|---|---|---|---|
TiBN | 5.0 | 0.7 | 400 | 100 | 70 | 70 | 1 | 60 |
CrAlN | 5.0 | 0.7 | 400 | 100 | 70 | 70 | 1 | 60 |
TiBN/CrAlN | 5.0 | 0.7 | 400 | 100 | 70 | 70 | 1 | 60 |
(g/L) NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 |
---|---|---|---|---|---|
24.53 | 5.20 | 4.09 | 1.16 | 0.695 | 0.201 |
Sample | Ecorr/V | |
---|---|---|
304SS | 3.816 | −0.3544 |
TiBN | 0.4732 | −0.1727 |
CrAlN | 0.2456 | −0.075 |
TiBN/CrAlN | 1.144 | 0.0021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Yu, Y.; Li, Y.; Xiang, Y.; Zou, C. Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving. Coatings 2024, 14, 1435. https://doi.org/10.3390/coatings14111435
Yuan F, Yu Y, Li Y, Xiang Y, Zou C. Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving. Coatings. 2024; 14(11):1435. https://doi.org/10.3390/coatings14111435
Chicago/Turabian StyleYuan, Feng, Yunjiang Yu, Yuekai Li, Yanxiong Xiang, and Changwei Zou. 2024. "Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving" Coatings 14, no. 11: 1435. https://doi.org/10.3390/coatings14111435
APA StyleYuan, F., Yu, Y., Li, Y., Xiang, Y., & Zou, C. (2024). Design and Corrosion Resistance Performance of Nano-Multilayer Coatings for the Protection of Breathing Gas Cylinders Used in Diving. Coatings, 14(11), 1435. https://doi.org/10.3390/coatings14111435