Micro-Scale Fracture Characteristics of Emulsified Asphalt Cold Recycled Mixture Based on Discrete Element Method
Abstract
:1. Introduction
2. Laboratory Test and Discrete Element Model
2.1. Raw Materials
2.2. SCB Test
2.3. Numerical Model Construction
2.3.1. Construction of the Aggregate Model
2.3.2. Specimen Model Construction
2.4. Contact Constitutive Model and Parameter Determination
2.4.1. Introduction of Contact Constitutive Model
2.4.2. Micromechanical Parameters
3. Results and Discussion
3.1. Analysis of 2D-SCB Virtual Fracture Process
3.2. Influence of Aggregate Gradation
3.3. Fracture Cracked
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.H.; Wang, H.B.; Yang, Y.; Zhang, H.Z. Evaluation of the evolution of the structure of cold recycled mixture subjected to wheel tracking using digital image processing. Constr. Build. Mater. 2021, 304, 124680. [Google Scholar] [CrossRef]
- Lin, J.T.; Huo, L.; Xu, F.; Xiao, Y.; Hong, J.X. Development of microstructure and early-stage strength for 100% cold recycled asphalt mixture treated with emulsion and cement. Constr. Build. Mater. 2018, 189, 924–933. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Z.G.; Yang, Y.H.; Yue, L.; Chen, G.L. Effects of freeze–Thaw cycles on performance and microstructure of cold recycled mixtures with asphalt emulsion. Coatings 2022, 12, 802. [Google Scholar] [CrossRef]
- Bazuhair, R.W.; Howard, I.L.; Middleton, A.; Jordan III, W.S.; Cox, B.C. Combined Effects of Oxidation, Moisture, and Freeze–Thaw on Asphalt Mixtures. Transp. Res. Rec. 2020, 2674, 409–424. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Jiang, J.B.; Li, P.; Nian, T.F. Mesoscopic process of water damage development of asphalt mixture in seasonal frozen area under scouring action of dynamic water. Mater. Bull. 2022, 36, 50–56. [Google Scholar]
- Ding, X.H.; Ma, T.; Gu, L.H.; Zhang, Y. Investigation of surface micro-crack growth behavior of asphalt mortar based on the designed in.novative mesoscopic test. Mater. Des. 2020, 185, 108238. [Google Scholar] [CrossRef]
- Yu, J.J.; Li, G.D.; Ren, Z.Y.; Zhang, W.; Tang, J.Q.; Zhang, L.; Si, X.L.; Zhao, Z.M. Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model. Constr. Build. Mater. 2019, 226, 802–817. [Google Scholar] [CrossRef]
- Loria, L.; Sebaaly, P.E.; Hajj, E.Y. Long-Term Performance of Reflective Cracking Mitigation Techniques in Nevada. J. Transp. Res. Board. 2008, 2044, 86–95. [Google Scholar] [CrossRef]
- Morian, D.A.; Oswalt, J.; Deodhar, A. Experience with Cold In-Place Recycling as a Reflective Crack Control Technique: Twenty Years Later. Transp. Res. Rec. 2004, 1869, 47–55. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zheng, M.L.; Pei, J.Z.; Zhang, J.P.; Li, R. Research on Low Temperature Performance of Emulsified Asphalt Cold Recycled Mixture and Improvement Measures Based on Fracture Energy. Materials 2020, 13, 3176. [Google Scholar] [CrossRef]
- Wang, D.C.; Hao, P.W.; Li, R.X.; Liu, N. Experimental study on low temperature crack resistance of emulsified asphalt cold recycled mixture. J. Wuhan Univ. Technol. Trans. Sci. Ed. 2020, 44, 64–68. [Google Scholar] [CrossRef]
- Barghabany, P.; Cao, W.; Mohammad, L.N.; Cooper, S.B., III; Cooper, S.B., Jr. Relationships among Chemistry, Rheology, and Fracture/Fatigue Performance of Recovered Asphalt Binders and Asphalt Mixtures Containing Reclaimed Asphalt Pavement. Transp. Res. Rec. 2020, 2674, 927–938. [Google Scholar] [CrossRef]
- Ma, Q. Study on Crack Resistance of RAP Cold Recycled Mixture. China J. Foreign Highw. 2016, 36, 284–287. [Google Scholar] [CrossRef]
- Flores, G.; Gallego, J.; Miranda, L.; Marcobal, J.R. Cold asphalt mix with emulsion and 100% rap: Compaction energy and influence of emulsion and cement content. Constr. Build. Mater. 2020, 250, 118804. [Google Scholar] [CrossRef]
- Zhang, R.H.; Sias, J.E.; Dave, E.V.; Rahbar-Rastegar, R. Impact of Aging on the Viscoelastic Properties and Cracking Behavior of Asphalt Mixtures. Transport. Res. Rec. 2019, 2673, 406–415. [Google Scholar] [CrossRef]
- Feng, D.C.; Cui, S.T.; Yi, J.Y.; Chen, Z.G.; Qin, W.J. Research on low temperature performance evaluation index of asphalt mixture based on SCB test. China J. Highw. Transp. 2020, 33, 50–57. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.M. Analysis of the influence of aggregate distribution characteristics on the fatigue performance of mixtures. J. Build. Mater. 2009, 12, 442–447. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.S.; Deng, Z.G.; Wu, W.L.; Sun, Y.Y. 3D simulation design and virtual shear test of asphalt mixture. J. Tongji Univ. Nat. Sci. 2018, 46, 1049–1056. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.D.; You, Z.P.; Yao, S.; Gong, F.Y.; Wang, H.N. Discrete element modeling of realistic particle shapes in stone-based mixtures through MATLAB-based imaging process. Constr. Build. Mater. 2017, 143, 169–178. [Google Scholar] [CrossRef]
- Yan, K.Z.; Ge, D.D.; You, L.Y. Microscopic analysis of uniaxial penetration shear test of asphalt mixture. J. Hunan City Univ. Nat. Sci. 2015, 42, 113–119. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.Y.; Zhang, Y.; Wang, S.Q.; Huang, X.M. Simulation of wheel tracking test for asphalt mixture using discrete element modelling. Road. Mater. Pavement. 2018, 19, 367–384. [Google Scholar] [CrossRef]
- Chang, M.F.; Sheng, Y.P.; Niu, X.B.; Zhang, J.; Wang, X.R. Mesoscopic analysis of contact force chain and displacement field between asphalt mixture particles. Mater. Rev. 2015, 29, 153–156. [Google Scholar] [CrossRef]
- Wu, W.L.; Tu, Z.X.; Li, Z. Based on the discrete element method, the influence of segregation on the structural characteristics of the mixture skeleton. J. Guangxi Univ. Nat. Sci. Ed. 2018, 43, 2303–2310. [Google Scholar] [CrossRef]
- Liu, W.D.; Gao, Y.; Huang, X.M.; Tian, B. Analysis of meso-characteristics of in-situ compaction of asphalt pavement. J. Harbin Inst. Technol. (Chin. Ed.) 2019, 51, 99–106. [Google Scholar] [CrossRef]
- Shi, L.W.; Wang, D.Y.; Xu, C.; Liang, H.H. Study on meso-performance of asphalt mixture skeleton based on discrete element method. J. South China Univ. Technol. Nat. Sci. 2015, 43, 50–56. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Huang, X.M.; Gao, Y. Three-dimensional discrete element virtual uniaxial creep test of asphalt mixture. J. South China Univ. Technol. Nat. Sci. 2012, 40, 15–20. [Google Scholar] [CrossRef]
- Yu, H.N.; Shen, S.H. A micromechanical based three-dimensional DEM approach to characterize the complex modulus of asphalt mixtures. Constr. Build. Mater. 2013, 38, 1089–1096. [Google Scholar] [CrossRef]
- Huang, K.; Xu, T.; Li, G.F.; Jiang, R.L. The feasibility of DEM to analyze the temperature field of asphalt mixture. Constr. Build. Mater. 2016, 106, 592–599. [Google Scholar] [CrossRef]
- Buttlar, W.G.; You, Z. Discrete Element Modeling of Asphalt Concrete: Microfabric Approach. Transp. Res. Rec. 2001, 1757, 111–118. [Google Scholar] [CrossRef]
- Barghabany, P.; Zhang, J.; Mohammad, L.N.; Cooper, S.B., III; Cooper, S.B., Jr. Novel Model to Predict Critical Strain Energy Release Rate in Semi-Circular Bend Test as Fracture Parameter for Asphalt Mixtures Using an Artificial Neural Network Approach. Transp. Res. Rec. 2022, 2676, 388–400. [Google Scholar] [CrossRef]
- JTG/T 5521-2019; Technical Specification for Highway Asphalt Pavement Recycling. People’s Transportation Press: Beijing, China, 2019.
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavements. People’s Transportation Press: Beijing, China, 2004.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. People’s Transportation Press: Beijing, China, 2011.
- Ding, X.H.; Ma, T.; Gao, W. Morphological characterization and mechanical analysis for coarse aggregate skeleton of asphalt mixture based on discrete-element modeling. Constr. Build. Mater. 2017, 154, 1048–1061. [Google Scholar] [CrossRef]
- Xue, B.; Pei, J.Z.; Zhou, B.C.; Zhang, J.P.; Li, R.; Guo, F.C. Using random heterogeneous DEM model to simulate the SCB fracture behavior of asphalt concrete. Constr. Build. Mater. 2020, 236, 117580. [Google Scholar] [CrossRef]
- Gao, L. Crack Development Behavior and Crack Resistance Mechanism of Emulsified Asphalt Cold Recycled Mixture. Ph.D. Thesis, Jiangsu Southeast University, Nanjing, China, 2016. [Google Scholar] [CrossRef]
- Luan, Y.C.; Chen, T.; Ma, T.; Ma, Y.; Wang, N. Fracture performance analysis of cold recycled mixture based on refined DEM modeling. China J. Highw. Transp. 2021, 34, 125–134. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zhou, X.D.; You, Z.P.; Liu, Y.; Chen, S.Y. Using discrete element models to track movement of coarse aggregates during compaction of asphalt mixture. Constr. Build. Mater. 2018, 189, 338–351. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.Y.; Zhang, Y.; Zhao, Y.L.; Huang, X.M. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Mater. Des. 2016, 89, 304–313. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yue, L.; Cui, H.; Yang, Y. Simulation and evaluation of fatigue damage of cold recycled mixtures with bitumen emulsion. Constr. Build. Mater. 2023, 364, 129976. [Google Scholar] [CrossRef]
- Zhou, X.D.; Chen, S.Y.; Ge, D.D.; Jin, D.Z.; You, Z.P. Investigation of asphalt mixture internal structure consistency in accelerated discrete element models. Constr. Build. Mater. 2020, 244, 118272. [Google Scholar] [CrossRef]
- Qian, G.P.; Hu, K.K.; Li, J.; Bai, X.P.; Li, N.Y. Compaction process tracking for asphalt mixture using discrete element method. Constr. Build. Mater. 2020, 235, 117478. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.L.; Cheng, J.J.; Ye, G. Mesoscopic creep mechanism of asphalt mixture based on discrete element method. Constr. Build. Mater. 2021, 272, 121932. [Google Scholar] [CrossRef]
- Yang, Y.H.; Li, B.C.; Yang, Y.; Chen, Y.M.; Zhang, L.L. Micro-damage characteristics of cold recycled mixture under freeze–thaw cycles based on discrete-element modeling. Constr. Build. Mater. 2023, 409, 133957. [Google Scholar] [CrossRef]
- Wang, L.; Shan, M.Y.; Li, C. The cracking characteristics of the polymer-modified asphalt mixture before and after aging based on the digital image correlation technology. Constr. Build. Mater. 2020, 260, 119802. [Google Scholar] [CrossRef]
- Al Khateeb, L.; Anupam, K.; Erkens, S.; Scarpas, T. Micromechanical simulation of porous asphalt mixture compaction using discrete element method (DEM). Constr. Build. Mater. 2021, 301, 124305. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Liu, Y.P.; Wang, Z.Q.; Ji, X. Study on the cracking behavior of asphalt mixture by discrete element modeling with real aggregate morphology. Constr. Build. Mater. 2023, 368, 130406. [Google Scholar] [CrossRef]
- Zhao, X.K.; Dong, Q.; Chen, X.Q.; Ni, F.J. Meso-cracking characteristics of rubberized cement-stabilized aggregate by discrete element method. J. Clean. Prod. 2021, 316, 128374. [Google Scholar] [CrossRef]
Index | Test Result | Technical Requirement |
---|---|---|
Moisture content/% | 0.85 | ≤3 |
Asphalt content/% | 4.5 | - |
Sand equivalent/% | 61.2 | ≥50 |
Index | Test Result | Technical Requirement |
---|---|---|
Residue content/% | 64.0 | ≥60 |
Penetration (25 °C, 100 g)/0.1 mm | 68.1 | 50~130 |
Ductility (15 °C)/cm | 76.5 | ≥40 |
Solubility/% | 99.1 | ≥97.5 |
Storage stability (5 d, 25 °C)/% | 2.7 | ≤5 |
Sieve Size/mm | 26.5~19.0 | 19.0~16.0 | 16.0~13.2 | 13.2~9.5 | 9.5~4.75 | 4.75~2.36 |
---|---|---|---|---|---|---|
New aggregate PV/% | 1.8 | 1.5 | 3 | 4.5 | 7.5 | 4.5 |
RAP PV/% | - | 1.68 | 1.89 | 5.73 | 21 | 15.1 |
E1/MPa | E2/MPa | η1/MPa·s | η2/MPa·s |
---|---|---|---|
274.51 | 79.84 | 72074.9 | 2498.32 |
Kmn/Pa | Kkn/Pa | Cmn/Pa·s | Ckn/Pa·s | Kms/Pa | Kks/Pa | Cms/Pa·s | Cks/Pa·s | |
---|---|---|---|---|---|---|---|---|
Mortar | 4.98 × 106 | 1.44 × 107 | 1.59 × 105 | 5.49 × 105 | 2.00 × 106 | 5.77 × 107 | 6.39 × 105 | 2.19 × 105 |
Aggregate-mortar | 3.74 × 106 | 1.08 × 107 | 1.11 × 105 | 4.11 × 105 | 1.49 × 106 | 4.32 × 107 | 4.79 × 105 | 1.64 × 105 |
Effective Modulus emod/Pa | Tensile Strength σc/Pa | Shear Strength c/Pa | Friction Coefficient f | Normal to Shear Stiffness Ratio | |
---|---|---|---|---|---|
Mortar | 2.13 × 106 | 2.36 × 105 | 3.50 × 105 | 0.25 | 1 |
Aggregate-mortar | 2.00 × 106 | 2.18 × 105 | 3.10 × 105 | 0.25 | 2.4 |
Sieve Size/mm | Sieve Pass Rate/% | ||
---|---|---|---|
Coarse A | Medium-Grained B | Fine-Grained C | |
37.5 | 100 | — | — |
26.5 | 90 | 100 | — |
19 | 85 | 95 | 100 |
16 | 76.5 | 90 | 95 |
13.2 | 70 | 82.5 | 90 |
9.5 | 55 | 70 | 70 |
4.75 | 42.5 | 50 | 60 |
2.36 | 30 | 35 | 40 |
1.18 | 21.5 | 25 | 27.5 |
0.6 | 15.5 | 17 | 19.5 |
0.3 | 11.5 | 11.5 | 15.5 |
0.15 | 6.5 | 7.5 | 9.5 |
0.075 | 4 | 5 | 5.5 |
Total Number of Cracks | Total Crack Length/mm | |
---|---|---|
Tensile crack | 1099 | 227.4 |
Shear fissure | 5 | 1.4 |
Grand total | 1104 | 228.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Y.; Li, B.; Yang, Y. Micro-Scale Fracture Characteristics of Emulsified Asphalt Cold Recycled Mixture Based on Discrete Element Method. Coatings 2024, 14, 1436. https://doi.org/10.3390/coatings14111436
Yang Y, Chen Y, Li B, Yang Y. Micro-Scale Fracture Characteristics of Emulsified Asphalt Cold Recycled Mixture Based on Discrete Element Method. Coatings. 2024; 14(11):1436. https://doi.org/10.3390/coatings14111436
Chicago/Turabian StyleYang, Yanhai, Yumeng Chen, Baichuan Li, and Ye Yang. 2024. "Micro-Scale Fracture Characteristics of Emulsified Asphalt Cold Recycled Mixture Based on Discrete Element Method" Coatings 14, no. 11: 1436. https://doi.org/10.3390/coatings14111436
APA StyleYang, Y., Chen, Y., Li, B., & Yang, Y. (2024). Micro-Scale Fracture Characteristics of Emulsified Asphalt Cold Recycled Mixture Based on Discrete Element Method. Coatings, 14(11), 1436. https://doi.org/10.3390/coatings14111436