The Form of Electrodeposited Iridium Ions in a Molten Chloride Salt and the Effects of Different Iridium Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Molten Salts
2.2. Study of the Structure of Ionic Complexes in Molten Salt Systems
2.3. Electrodeposition of Ir Coatings
3. Results and Discussion
3.1. Thermal Stability of IrCl3
3.2. Ir Complex Structure in the Molten Salt System
3.3. Effects of Ir3+ Concentration on the Microstructure of Ir Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.F.; Wu, W.P.; Cheng, H.; Liu, Y.; Wang, S.M.; Xue, R.J. Microstructure and evolution of iridium coating on the C/C composites ablated by oxyacetylene torch. Acta Astronaut. 2010, 66, 682–687. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhu, L.A.; Ye, Y.C.; Zhang, H.; Bai, S.X. Iridium coatings with various grain structures prepared by electrodeposition from molten salts: Growth mechanism and high temperature oxidation resistance. Surf. Coat. Technol. 2017, 325, 190–199. [Google Scholar] [CrossRef]
- Bai, S.; Huang, Y.; Ye, Y.; Zhang, H. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air. Appl. Surf. Sci. 2015, 328, 436. [Google Scholar]
- Zhang, H.; Zhu, L.A.; Bai, S.X.; Ye, Y.C. Ablation-resistant Ir/Re coating on C/C composites at ultra-high temperatures. Rare Met. 2022, 41, 199–208. [Google Scholar] [CrossRef]
- Wang, J.M.; Zhang, Z.W.; Xu, Z.H.; Lin, X.; Wu, W.P.; Chen, Z.F. Oxidation of double glow plasma discharge coatings of iridium on molybdenum for liquid fuelled rocket motor casings. Corros. Eng. Sci. Technol. 2011, 46, 732–736. [Google Scholar] [CrossRef]
- Reed, B.D.; Biaglow, J.A. Engineering Issues of Iridium Coated Rhenium Rockets. Mater. Manuf. Process. 1998, 13, 757–771. [Google Scholar] [CrossRef]
- Wu, W.P.; Chen, Z.F. Iridium Coating: Processes, Properties and Application. Part I. Johns. Matthey Technol. Rev. 2017, 61, 16–28. [Google Scholar] [CrossRef]
- Yang, S.; Yu, X.; Tan, C.; Wang, Y.; Ma, H.; Liu, K.; Cai, H. Growth kinetics and microstructure of MOCVD iridium coating from iridium(III) acetylacetonate with hydrogen. Appl. Surf. Sci. 2015, 329, 248–255. [Google Scholar] [CrossRef]
- Yang, W.B.; Zhang, L.T.; Hua, Y.F.; Cheng, L.F. Thermal stability of iridium coating prepared by MOCVD. Int. J. Refract. Met. Hard Mater. 2009, 27, 33–36. [Google Scholar] [CrossRef]
- Cai, H.Z.; Chen, L.; Wei, Y.; Hu, C.Y. Deposition Effectiveness Investigation of Ir Film Prepared by MOCVD. Rare Met. Mater. Eng. 2010, 39, 209–213. [Google Scholar]
- Maury, F.; Senocq, F. Iridium coatings grown by metal–organic chemical vapor deposition in a hot-wall CVD reactor. Surf. Coat. Technol. 2003, 163–164, 208–213. [Google Scholar] [CrossRef]
- Garcia, V.; Goto, T. Chemical Vapor Deposition of Iridium, Platinum, Rhodium and Palladium. Mater. Trans. 2003, 44, 1717–1728. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Xu, Z.H.; Wang, J.M.; Wu, W.P.; Chen, Z.F. Preparation and characterization of Ir coating on WC ceramic by double glow plasma. J. Mater. Eng. Perform. 2012, 21, 2085–2089. [Google Scholar] [CrossRef]
- Zhu, X.B.; Dang, B.; Li, F.K.; Wei, D.B.; Zhang, P.; Li, S. Tribocorrosion behavior of Nb coating deposited by double-glow plasma alloying. Mater. Res. Express 2021, 8, 016411. [Google Scholar] [CrossRef]
- Wu, W.P.; Chen, Z.F.; Cheng, X.; Wang, Y.W. EBSD study of (110) orientation of iridium (Ir) coating on niobium (Nb) substrate by double glow plasma. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 307, 315–319. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Z. Growth mechanism of polycrystalline Ir coating by double glow plasma technology. Plasma Sci. Technol. 2012, 25, 469–479. [Google Scholar]
- Khoa, T.D.; Horii, S.; Horita, S. High deposition rate of epitaxial (100) Iridium film on (100)YSZ/(100)Si substrate by RF sputtering deposition. Thin Solid Film. 2002, 419, 88–94. [Google Scholar] [CrossRef]
- El Khakani, M.A.; Chaker, M.; Le Drogoff, B. Iridium thin films deposited by radio-frequency magnetron sputtering. J. Vac. Sci. Technol. A 1998, 16, 885–888. [Google Scholar] [CrossRef]
- Mumtaz, K.; Echigoya, J.; Hirai, T.; Shindo, Y. Iridium coatings on carbon-carbon composites produced by two different sputtering methods: A comparative study. J. Mater. Sci. Lett. 1993, 12, 1411–1412. [Google Scholar] [CrossRef]
- Mumtaz, K.; Echigoya, J.; Hirai, T.; Shindo, Y. R.f. magnetron sputtered iridium coatings on carbon structural materials. Mater. Sci. Eng. A 1993, 167, 187–195. [Google Scholar] [CrossRef]
- Schmitt, P.; Paul, P.; Li, W.; Wang, Z.; David, C.; Daryakar, N.; Hanemann, K.; Felde, N.; Munser, A.S.; Kling, M.F.; et al. Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings 2023, 13, 787. [Google Scholar] [CrossRef]
- Hong, K.C.; Kim, H.; Jeon, J.; Kim, S.C.; Won, S.O.; Harada, R.; Tsugawa, T.; Chung, Y.J.; Baek, S.-H.; Park, T.J.; et al. Nucleation and Layer Closure Behavior of Iridium Films Grown Using Atomic Layer Deposition. J. Phys. Chem. Lett. 2023, 14, 6486–6493. [Google Scholar]
- Park, N.Y.; Kim, M.; Kim, Y.H.; Ramesh, R.; Nandi, D.K.; Tsugawa, T.; Shigetomi, T.; Suzuki, K.; Harada, R.; Kim, M.; et al. Atomic Layer Deposition of Iridium Using a Tricarbonyl Cyclopropenyl Precursor and Oxygen. Chem. Mater. 2022, 34, 1533–1543. [Google Scholar] [CrossRef]
- Gao, H.J.; Xiong, Y.Q.; Zhang, K.F.; Wang, W.X.; Cao, S.; Wang, L. A first-principles study of deposition of iridium coating on Mo (1 1 0) surface by atomic layer deposition. Phys. B Condens. Matter 2022, 630, 413601. [Google Scholar] [CrossRef]
- Qian, J.G.; Zhao, T. Electrodeposition of Ir on platinum in NaCl-KCl molten salt. Trans. Nonferrous Met. Soc. China 2012, 22, 2855–2862. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.; Zhang, X.; Niu, B.; Wang, B.; Li, R. Deposition of Iridium Coating on Pure Tungsten and High temperature Oxidation Behavior at 1300 K. Coatings 2022, 12, 1761. [Google Scholar] [CrossRef]
- Qian, J.G.; Yin, Y.; Li, X. Electrodeposition of iridium from composite ionic liquid. Trans. Nonferrous Met. Soc. China 2015, 25, 1685–1691. [Google Scholar] [CrossRef]
- Hu, S.P.; Bai, S.X.; ZHU, L.A.; Ye, Y.C.; Wang, Z.; Li, S.; Tang, Y. Micromorphology and texture of niobium coating electrodeposited in NaCl—KCl—CsCl molten salt system. Trans. Nonferrous Met. Soc. China 2022, 32, 3650–3662. [Google Scholar] [CrossRef]
- Wang, J.F.; Bai, S.X.; Ye, Y.C.; Zhang, H.; Zhu, L.A. Microstructure and mechanical properties of rhenium prepared by electroforming in NaCl-KCl-CsCl-K2ReCl6 molten salts. Int. J. Refract. Met. Hard Mater. 2018, 72, 263–269. [Google Scholar] [CrossRef]
- Zhu, L.A.; Bai, S.X.; Zhang, H.; Ye, Y.; Tong, Y. Comparative Investigation of Iridium Coating Electrodeposited on Molybdenum, Rhenium and C/C Composite Substrates in Molten Salt in the Air Atmosphere. Phys. Procedia 2013, 50, 238–247. [Google Scholar] [CrossRef]
- Zhu, L.A.; Bai, S.X.; Zhang, H. Iridium coating prepared on rhenium substrate by electrodeposition in molten salt in the air atmosphere. Surf. Coat. Technol. 2011, 206, 1351–1354. [Google Scholar] [CrossRef]
- Zhu, L.A.; Wang, J.F.; Wang, Z.; Ye, Y.C.; Bai, S.X.; Li, S.; Tang, Y. High temperature diffusion in couple of electrodeposited iridium/rhenium. Int. J. Refract. Met. Hard Mater. 2021, 97, 105519. [Google Scholar] [CrossRef]
- Huang, Y.L.; Bai, S.X.; Zhang, H.; Ye, Y.C. Growth mechanism and mechanical property of laminar iridium coating by electrodeposition. Int. J. Refract. Met. Hard Mater. 2015, 50, 204–209. [Google Scholar] [CrossRef]
- Huang, Y.; Bai, S.; Zhang, H.; Ye, Y.; Zhu, L. Electrochemical studies of Ir coating deposition from NaCl-KCl-CsCl molten salts. Surf. Coat. Technol. 2017, 322, 76–85. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Beijing University of Technology Press: Beijing, China, 1991; pp. 128–200. [Google Scholar]
- Beattie, I.R. Matrix-isolation studies on Group 3 trihalides. Part I. Vibrational spectra and molecular shapes of monomeric trichlorides of aluminium, gallium, and indium. J. Chem. Soc. Dalton Trans. 1976, 1, 666–676. [Google Scholar] [CrossRef]
- Quicksall, C.O.; Spiro, T.G. Raman intensities and metal-metal bond orders. Inorg. Chem. 1970, 9, 1045–1049. [Google Scholar] [CrossRef]
- Iwadate, Y. Raman Spectroscopy and Pulsed Neutron Diffraction of Molten Salt Mixtures Containing Rare-Earth Trichlorides: Trial Approaches from Fundamentals to Pyrochemical Reprocessing. Molten Salts Chem. 2013, 17–31. [Google Scholar] [CrossRef]
- Bottger, G.L.; Salwin, A.E. The vibrational spectra of alkali salts of hexahaloiridates. Spectrochim. Acta Part A 1972, 28, 925–931. [Google Scholar] [CrossRef]
- Kirill, V.Y.; Valentina, V.Z.; Svetlana, A.M.; Igor, P.A.; Camille, L.; Olga, R.; Alexander, I.G.; Pavel, E.P.; Sergey, V.K.; Tatyana, I.A. Insight of the thermal decomposition of ammonium hexahalogenoiridates (iv) and hexachloroiridate (iii). Phys. Chem. Chem. Phys. 2020, 22, 22923–22934. [Google Scholar]
- Kuan, T.S. Raman and infrared spectra of K2PtCl6:Ir4+ crystals. J. Raman Spectrosc. 1976, 4, 373–378. [Google Scholar] [CrossRef]
- Hamaguchi, H.; Harada, I.; Shimanouchi, T. Anomalous polarization in the resonance Raman effect of octahedral hexachloroiridate (IV) ion. Chem. Phys. Lett. 1975, 32, 103–107. [Google Scholar] [CrossRef]
30 °C | 450 °C | 500 °C | Reasons for Changes | |
---|---|---|---|---|
178 cm−1 | IrCl3 | IrCl3 CsCl | - | Chemical bond breaking |
CsCl | ||||
215 cm−1 | M-M | M-M | - | Thermal decomposition |
302 cm−1 | IrCl3 | - | - | Chemical bond breaking |
KCl | ||||
351 cm−1 | NaCl | NaCl | - | Chemical bond breaking |
169 cm−1 | - | - | (IrCl6)2− | Complex formation |
(IrCl6)3− | ||||
292 cm−1 | - | (IrCl6)2− | (IrCl6)2− (IrCl6)3− | Complex formation |
(IrCl6)3− | ||||
KCl | ||||
312 cm−1 | - | (IrCl6)3−- | (IrCl6)3− | Complex formation |
IrCl3 |
Type | Sample Weight m (g) | Sample Weight C1 (mg/L) | Ir Content (%) |
---|---|---|---|
Before electrodeposition | 0.058 | 48.990 | 2.1 |
48.605 | |||
48.523 | |||
Graphite as anode; electrodeposition of 40 min | 0.044 | 11.091 | 0.63 |
11.090 | |||
11.001 | |||
Graphite as anode; electrodeposition of 80 min | 0.073 | 4.457 | 0.15 |
4.415 | |||
4.397 | |||
Ir metal as anode; electrodeposition of 80 min | 0.053 | 35.347 | 1.66 |
35.171 | |||
35.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Liu, Z.; Fang, Z.; Wang, H.; Lv, B.; Hu, Z. The Form of Electrodeposited Iridium Ions in a Molten Chloride Salt and the Effects of Different Iridium Concentrations. Coatings 2024, 14, 1388. https://doi.org/10.3390/coatings14111388
Ding C, Liu Z, Fang Z, Wang H, Lv B, Hu Z. The Form of Electrodeposited Iridium Ions in a Molten Chloride Salt and the Effects of Different Iridium Concentrations. Coatings. 2024; 14(11):1388. https://doi.org/10.3390/coatings14111388
Chicago/Turabian StyleDing, Chenxi, Zhongyu Liu, Zhen Fang, Haoxu Wang, Biao Lv, and Zhenfeng Hu. 2024. "The Form of Electrodeposited Iridium Ions in a Molten Chloride Salt and the Effects of Different Iridium Concentrations" Coatings 14, no. 11: 1388. https://doi.org/10.3390/coatings14111388
APA StyleDing, C., Liu, Z., Fang, Z., Wang, H., Lv, B., & Hu, Z. (2024). The Form of Electrodeposited Iridium Ions in a Molten Chloride Salt and the Effects of Different Iridium Concentrations. Coatings, 14(11), 1388. https://doi.org/10.3390/coatings14111388