Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Pretreatment of the PEEK Filament Yarn Surface with a Plasma Torch
2.3. Nickel Plating of Plasma-Torch-Pretreated PEEK Filament Yarns
2.4. Characterization
2.4.1. Surface Morphology by Light Microscope
2.4.2. Investigation of the Surface Morphology and Determination of the Nickel Layer Thickness Using Scanning Electron Microscopy (SEM)
2.4.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.4.4. Surface Free Energy Measurement
2.4.5. Tensile Strength Measurement
2.4.6. Measurement of Electrical Resistance
3. Results and Discussion
3.1. Chemical Composition Analysis of PEEK Filament Yarn
3.2. Surface Free Energy Analysis
3.3. Surface Morphology
3.4. Nickel Layer Thickness
3.5. Tensile Strength
3.6. Electrical Resistivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Sharma, N.; Kango, S.; Sharma, S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021, 147, 110295. [Google Scholar] [CrossRef]
- Sang, S.; Yuan, K.; Lv, S.; Wang, T.; Zhao, G.; Liu, P.; Gao, D.; Li, X.; Qiao, Y. Study on laser processing of medical polyether ether ketone surface texture and its improvement on service performance. AIP Adv. 2024, 14, 035349. [Google Scholar] [CrossRef]
- Soukup, R.; Hamacek, A.; Mracek, L.; Reboun, J. Textile based temperature and humidity sensor elements for healthcare applications. In Electronics Technology (ISSE), Proceedings of the 2014 37th International Spring Seminar in Electronics Technology (ISSE), Dresden, Germany, 7–11 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 407–411. ISBN 978-1-4799-4455-2. [Google Scholar]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Su, R.; Teng, L.; Tian, Q.; Han, F.; Li, H.; Cao, Z.; Xie, R.; Li, G.; Liu, X.; et al. Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale 2022, 14, 1653–1669. [Google Scholar] [CrossRef]
- Hatamie, A.; Angizi, S.; Kumar, S.; Pandey, C.M.; Simchi, A.; Willander, M.; Malhotra, B.D. Review—Textile Based Chemical and Physical Sensors for Healthcare Monitoring. J. Electrochem. Soc. 2020, 167, 37546. [Google Scholar] [CrossRef]
- Nan, N.; He, J.; You, X.; Sun, X.; Zhou, Y.; Qi, K.; Shao, W.; Liu, F.; Chu, Y.; Ding, B. A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics. Adv. Mater. Technol. 2019, 4, 1800338. [Google Scholar] [CrossRef]
- Shuvo, I.I.; Shah, A.; Dagdeviren, C. Electronic Textile Sensors for Decoding Vital Body Signals: State-of-the-Art Review on Characterizations and Recommendations. Adv. Intell. Syst. 2022, 4, 2100223. [Google Scholar] [CrossRef]
- Fan, W.; He, Q.; Meng, K.; Tan, X.; Zhou, Z.; Zhang, G.; Yang, J.; Wang, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840. [Google Scholar] [CrossRef]
- Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X.Y. Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature-Pressure Sensing. Small 2019, 15, e1901558. [Google Scholar] [CrossRef]
- Hasan, M.M.B.; Diestel, O.; Cherif, C. Electro-mechanical properties of friction spun conductive hybrid yarns made of carbon filaments for composites. Text. Res. J. 2011, 81, 1603–1616. [Google Scholar] [CrossRef]
- Onggar, T.; Häntzsche, E.; Hund, R.-D.; Cherif, C. Multilayered Glass Filament Yarn Surfaces as Sensor Yarn for In-situ Monitoring of Textile-reinforced Thermoplastic Composites. Fibers Polym. 2019, 20, 1945–1957. [Google Scholar] [CrossRef]
- Hasan, M.M.B.; Matthes, A.; Schneider, P.; Cherif, C. Application of carbon filament (CF) for structural health monitoring of textile reinforced thermoplastic composites. Mater. Technol. 2011, 26, 128–134. [Google Scholar] [CrossRef]
- Rausch, J.; Mäder, E. Health monitoring in continuous glass fibre reinforced thermoplastics: Manufacturing and application of interphase sensors based on carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1589–1596. [Google Scholar] [CrossRef]
- Cherif, C. (Ed.) Textile Werkstoffe für den Leichtbau: Techniken—Verfahren—Materialien—Eigenschaften; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9783642179921. [Google Scholar]
- Patel, P.; Hull, T.R.; Lyon, R.E.; Stoliarov, S.I.; Walters, R.N.; Crowley, S.; Safronava, N. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym. Degrad. Stab. 2011, 96, 12–22. [Google Scholar] [CrossRef]
- Akbarov, D.; Baymuratov, B.; Westbroek, P.; Akbarov, R.; de Clerck, K.; Kiekens, P. Development of electroconductive polyacrylonitrile fibers through chemical metallization and galvanisation. J. Appl. Electrochem. 2006, 36, 411–418. [Google Scholar] [CrossRef]
- Onggar, T.; Cheng, T.; Hund, H.; Hund, R.-D.; Cherif, C. Silvering of inert polyethylene terephthalate textile materials: The factors of adjustment on silver release, part II. Text. Res. J. 2011, 81, 1940–1948. [Google Scholar] [CrossRef]
- Onggar, T.; Cheng, T.; Hund, H.; Hund, R.-D.; Cherif, C. Metallization of inert polyethylene terephthalate textile materials: Wet-chemical silvering with natural and synthetic polyamine, part I. Text. Res. J. 2011, 81, 2017–2032. [Google Scholar] [CrossRef]
- Jha, S.; Bhowmik, S.; Bhatnagar, N.; Bhattacharya, N.K.; Deka, U.; Iqbal, H.M.S.; Benedictus, R. Experimental investigation into the effect of adhesion properties of PEEK modified by atmospheric pressure plasma and low pressure plasma. J. Appl. Polym. Sci. 2010, 118, 173–179. [Google Scholar] [CrossRef]
- Riveiro, A.; Soto, R.; Comesaña, R.; Boutinguiza, M.; Del Val, J.; Quintero, F.; Lusquiños, F.; Pou, J. Laser surface modification of PEEK. Appl. Surf. Sci. 2012, 258, 9437–9442. [Google Scholar] [CrossRef]
- Fu, Q.; Gabriel, M.; Schmidt, F.; Müller, W.-D.; Schwitalla, A.D. The impact of different low-pressure plasma types on the physical, chemical and biological surface properties of PEEK. Dent. Mater. 2021, 37, e15–e22. [Google Scholar] [CrossRef] [PubMed]
- Liston, E.M. Plasma Treatment for Improved Bonding: A Review. J. Adhes. 1989, 30, 199–218. [Google Scholar] [CrossRef]
- Piel, A. Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319634272. [Google Scholar]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Hasan, M.; Cherif, C.; Foisal, A.; Onggar, T.; Hund, R.D.; Nocke, A. Development of conductive coated Polyether ether ketone (PEEK) filament for structural health monitoring of composites. Compos. Sci. Technol. 2013, 88, 76–83. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, C.; Wang, H.; Yu, X.; Ramakrishna, S. Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. Eur. Polym. J. 2019, 118, 561–577. [Google Scholar] [CrossRef]
- Fricke, K.; Reuter, S.; Schroder, D.; Schulz-von der Gathen, V.; Weltmann, K.-D.; Woedtke, T. von. Investigation of Surface Etching of Poly(Ether Ether Ketone) by Atmospheric-Pressure Plasmas. IEEE Trans. Plasma Sci. 2012, 40, 2900–2911. [Google Scholar] [CrossRef]
- Choudhury, S.S.; Pandey, M.; Bhattacharya, S. Recent Developments in Surface Modification of PEEK Polymer for Industrial Applications: A Critical Review. Rev. Adhes. Adhes. 2022, 9, 401–433. [Google Scholar] [CrossRef]
- Binhasan, M.; Alhamdan, M.M.; Al-Aali, K.A.; Vohra, F.; Abduljabbar, T. Shear bond characteristics and surface roughness of poly-ether-ether-ketone treated with contemporary surface treatment regimes bonded to composite resin. Photodiagn. Photodyn. Ther. 2022, 38, 102765. [Google Scholar] [CrossRef]
- dos Santos, F.S.F.; Vieira, M.; da Silva, H.N.; Tomás, H.; Fook, M.V.L. Surface Bioactivation of Polyether Ether Ketone (PEEK) by Sulfuric Acid and Piranha Solution: Influence of the Modification Route in Capacity for Inducing Cell Growth. Biomolecules 2021, 11, 1260. [Google Scholar] [CrossRef]
- Dua, R.; Sharufa, O.; Terry, J.; Dunn, W.; Khurana, I.; Vadivel, J.; Zhang, Y.; Donahue, H.J. Surface modification of Polyether-ether-ketone for enhanced cell response: A chemical etching approach. Front. Bioeng. Biotechnol. 2023, 11, 1202499. [Google Scholar] [CrossRef]
- Jaafar, J.; Ismail, A.F.; Mustafa, A. Physicochemical study of poly(ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng. A 2007, 460–461, 475–484. [Google Scholar] [CrossRef]
- Alsmael, M.A.; Al-Khafaji, A.M. Evaluation of High-Performance Polyether Ether Ketone Polymer Treated with Piranha Solution and Epigallocatechin-3-Gallate Coating. BioMed Res. Int. 2024, 2024, 1741539. [Google Scholar] [CrossRef] [PubMed]
- Alsmael, M.A.; Mohammed Al-Khafaji, A. Improving Surface Properties of PEEK for Dental Applications by Using Piranha Solution. Int. J. Dent. 2023, 2023, 7840601. [Google Scholar] [CrossRef] [PubMed]
- Emara, M.H.; Wahsh, M.M.; Nour, M.M. Effect of manufacturing techniques and surface treatment of custom-made polyetheretherketone posts on the shear bond strength to resin cement versus customized fiber posts. Mansoura J. Dent. 2023, 10, 219–228. [Google Scholar] [CrossRef]
- Santos, F.S.F.d.; Rodrigues, J.F.B.; da Silva, M.C.; Barreto, M.E.V.; da Silva, H.N.; de Lima Silva, S.M.; Fook, M.V.L. Use of Piranha Solution as An Alternative Route to Promote Bioactivation of PEEK Surface with Low Functionalization Times. Molecules 2023, 28, 74. [Google Scholar] [CrossRef]
- Sarmadi, M. Advantages and disadvantages of plasma treatment of textile materials. In Proceedings of the 21st International Symposium on Plasma Chemistry (ISPC 21), Cairns, QLD, Australia, 4–9 August 2013. [Google Scholar]
- Malik, T.; Parmar, S. Use of Plasma Technology in Textiles Use of Plasma Technology in Textiles. Available online: https://www.researchgate.net/publication/326669117_Use_Of_Plasma_Technology_In_Textiles_Use_Of_Plasma_Technology_In_Textiles (accessed on 23 October 2024).
- Sparavigna, A. Plasma treatment advantages for textiles. arXiv 2008, arXiv:0801.3727. [Google Scholar]
- Duan, Q.; Sun, Q.; Lu, Y. Design of metalized polyether-ether-ether-ketone based on semi-additive manufacture for 5G applications: From bottom-up assembly to selective electroplating. J. Mater. Chem. C 2024, 12, 8873–8884. [Google Scholar] [CrossRef]
- Gerullis, S.; Gerschütz, A.; Beier, O.; Kretzschmar, B.S.M.; Pfuch, A.; Schmidt, J.; Grünler, B. Modification of powders by atmospheric pressure plasma and embedding into nickel coatings. Surf. Innov. 2020, 8, 304–314. [Google Scholar] [CrossRef]
- Delaunois, F.; Vitry, V.; Bonin, L. (Eds.) Electroless Nickel Plating: Fundamentals to Applications, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2020; ISBN 9780429466274. [Google Scholar]
- Gao, S.; Wu, C.; Yang, X.; Cheng, J.; Kang, R. Study on Adhesion Properties and Process Parameters of Electroless Deposited Ni-P Alloy for PEEK and Its Modified Materials. Coatings 2023, 13, 388. [Google Scholar] [CrossRef]
- Sarkar, S.; Baranwal, R.K.; Biswas, C.; Majumdar, G.; Haider, J. Optimization of process parameters for electroless Ni–Co–P coating deposition to maximize micro-hardness. Mater. Res. Express 2019, 6, 46415. [Google Scholar] [CrossRef]
- Yazdani, S.; Vitry, V. RSM models approach for optimization of the mechanical properties of electroless Ni-B-nanodiamond coating: An experimental and molecular dynamic simulation study. Surf. Coat. Technol. 2023, 452, 129133. [Google Scholar] [CrossRef]
- Rajaguru, J.C.; Duke, M.; Au, C. Investigation of electroless nickel plating on rapid prototyping material of acrylic resin. Rapid Prototyp. J. 2016, 22, 162–169. [Google Scholar] [CrossRef]
- Reade, G.W.; Kerr, C.; Des Barker, B.; Walsh, F.C. The Importance of Substrate Surface Condition in Controlling the Porosity of Electroless Nickel Deposits. Trans. IMF 1998, 76, 149–155. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e.V.; DIN German Institute for Standardization. DIN 55660-2; Beschichtungsstoffe-Benetzbarkeit-Teil 2: Bestimmung der Freien Oberflächenenergie Fester Oberflächen durch Messung des Kontaktwinkels; DIN Media GmbH: Berlin, Germany, 2024; Available online: https://nautos.de/O9G/search/item-detail/DE30035626 (accessed on 23 October 2024).
- Narushima, K.; Tasaka, S.; Inagaki, N. Surface Modification of Poly(aryl ether ether ketone) by Pulsed Oxygen Plasma. Jpn. J. Appl. Phys. 2002, 41, 6506–6516. [Google Scholar] [CrossRef]
- Lu, C.; Qiu, S.; Lu, X.; Wang, J.; Xiao, L.; Zheng, T.; Wang, X.; Zhang, D. Enhancing the Interfacial Strength of Carbon Fiber/Poly(ether ether ketone) Hybrid Composites by Plasma Treatments. Polymers 2019, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Al-Mufti, S.M.S.; Ali, M.M.; Rizvi, S.J.A. Synthesis and structural properties of sulfonated poly ether ether ketone (SPEEK) and Poly ether ether ketone (PEEK). In Proceedings of the 3rd International Conference on Condensed Matter and Applied Physics (ICC-2019), Bikaner, India, 14–15 October 2019; AIP Publishing: Melville, NY, USA, 2020; p. 20009. [Google Scholar]
- Flejszar, M.; Chmielarz, P. Surface Modifications of Poly(Ether Ether Ketone) via Polymerization Methods-Current Status and Future Prospects. Materials 2020, 13, 999. [Google Scholar] [CrossRef]
- Primc, G.; Mozetič, M. Surface Modification of Polymers by Plasma Treatment for Appropriate Adhesion of Coatings. Materials 2024, 17, 1494. [Google Scholar] [CrossRef]
- Sundriyal, P.; Pandey, M.; Bhattacharya, S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int. J. Adhes. Adhes. 2020, 101, 102626. [Google Scholar] [CrossRef]
No. | Power (%) | Frequency (kHz) | Actual Power (W) | Air Permeability (L/min) | Yarn Run Speed (m/min) | Distance Between the Tip of the Plasma Torch and the Yarn Surface (cm) |
---|---|---|---|---|---|---|
V1 | 80 | 54 | 650 ± 10 | 35 | 3 | 2 |
V2 | 80 | 54 | 650 ± 10 | 35 | 3 | 2.5 |
V3 | 80 | 54 | 650 ± 10 | 35 | 3 | 3 |
V4 | 100 | 54 | 750 ± 10 | 35 | 3 | 2 |
V5 | 100 | 54 | 750 ± 10 | 35 | 3 | 2.5 |
V6 | 100 | 54 | 750 ± 10 | 35 | 3 | 3 |
V7 | 100 | 54 | 750 ± 10 | 35 | 3 | 2.75 |
V8 | 100 | 54 | 750 ± 10 | 35 | 2.5 | 2.75 |
V9 | 100 | 54 | 750 ± 10 | 35 | 2 | 2.75 |
V10 | 100 | 54 | 750 ± 10 | 35 | 1.5 | 2.75 |
V11 | 80 | 54 | 650 ± 10 | 35 | 3 | 2.75 |
V12 | 80 | 54 | 650 ± 10 | 35 | 2 | 3 |
V13 | 100 | 54 | 750 ± 10 | 35 | 2 | 3 |
No. | Power (%) | Frequency (kHz) | Actual Power (W) | Air Permeability (L/min) | Yarn Run Speed (m/min) | Distance Between the Tip of the Plasma Torch and the Yarn Surface (cm) |
---|---|---|---|---|---|---|
V1 | 100 | 54 | 750 ± 10 | 35 | 3 | 2 |
V2 | 100 | 54 | 750 ± 10 | 35 | 3 | 2.5 |
V3 | 100 | 54 | 750 ± 10 | 35 | 3 | 3 |
V4 | 100 | 54 | 750 ± 10 | 35 | 3 | 1.5 |
V5 | 100 | 54 | 750 ± 10 | 35 | 2.5 | 2 |
V6 | 100 | 54 | 750 ± 10 | 35 | 2 | 2 |
Liquid | Surface Tension (mN/m) | Dispersive Part (mN/m) | Polar Part (mN/m) |
---|---|---|---|
Water | 72.8 | 21.8 | 51.0 |
Diiodomethane | 50.8 | 50.8 | 0.0 |
Untreated | Plasma-Torch-Pretreated | ||
---|---|---|---|
Sample | Diameter (μm) | Sample | Diameter (μm) |
V0 | 38.51 ± 0.67 | V1 | 38.67 ± 0.87 |
V2 | 40.44 ± 0.59 | ||
V3 | 40.43 ± 0.76 | ||
V4 | 41.05 ± 0.72 | ||
V6 | 41.38 ± 0.88 | ||
V7 | 40.77 ± 0.97 | ||
V8 | 40.81 ± 0.83 | ||
V9 | 41.02 ± 0.79 | ||
V10 | 40.53 ± 0.62 | ||
V11 | 39.06 ± 0.75 | ||
V12 | 40.12 ± 0.78 | ||
V13 | 42.06 ± 0.92 |
Variant | Contact Angle θ° | Surface Energy (mN/m) | |||
---|---|---|---|---|---|
θW° | ΘD° | Polar Part γp | Dispersive Part γd | Total SE, γgesamt | |
Untreated | 89.7 ± 1.33 | 61.17 ± 3.38 | 3.24 ± 1.41 | 25.86 ± 5.15 | 29.1 ± 6.56 |
V2 | 71.61 ± 8.83 | 41.62 ± 3.06 | 12.18 ± 5.12 | 24.17 ± 6.13 | 36.36 ± 4.52 |
V3 | 84.30 ± 2.66 | 48.57 ± 3.81 | 2.98 ± 1.96 | 35.17 ± 7.02 | 38.15 ± 8.98 |
V6 | 72.38 ± 6.34 | 31.5 ± 5.79 | 7.48 ± 6.85 | 35.67 ± 14.9 | 43.15 ± 11.50 |
V7 | 82.19 ± 7.34 | 47.29 ± 6.68 | 4.05 ± 5.74 | 33.37 ± 15.09 | 37.43 ± 12.83 |
V8 | 87.12 ± 1.86 | 61.38 ± 8.57 | 5.25 ± 3.89 | 21.94 ± 11.42 | 27.19 ± 15.31 |
V9 | 80.19 ± 4.59 | 54.99 ± 7.25 | 8.96 ± 6.18 | 20.66 ± 10.39 | 29.62 ± 16.56 |
V10 | 88.51 ± 5.09 | 52.00 ± 4.91 | 1.51 ± 2.49 | 37.47 ± 11,71 | 38.98 ± 14.20 |
V11 | 74.11 ± 4.55 | 25.66 ± 11.49 | 4.59 ± 4.08 | 44.29 ± 13.43 | 48.87 ± 13.51 |
V12 | 80.26 ± 8,56 | 45.26 ± 5.51 | 4.88 ± 7.08 | 32.88 ± 15.69 | 37.76 ± 9.77 |
V13 | 83.73 ± 2.53 | 44.42 ± 6.04 | 2.31 ± 1.93 | 40.00 ± 9.61 | 42.30 ± 11.54 |
No. | Width (μm) | High (μm) | Extent (μm) | Calculated Diameter (μm) |
---|---|---|---|---|
Untreated | 1755.36 ± 1.76 | 1121.41 ± 2.11 | 4573.84 ± 2.76 | 1455.90 ± 1.45 |
V1 | 1687.69 ± 1.45 | 1105.00 ± 1.98 | 4434.62 ± 2.44 | 1411.58 ± 1.53 |
V2 | 1714.67 ± 2.01 | 1100.26 ± 1.79 | 4474,51 ± 3.11 | 1424.28 ± 1.14 |
V3 | 1712.26 ± 1.82 | 1118.37 ± 1.81 | 4495.40 ± 2.56 | 1430.93 ± 1.52 |
V4 | 1674.81 ± 1.24 | 1106.21 ± 1.69 | 4414.19 ± 2.55 | 1405.08 ± 1.51 |
V5 | 1658.43 ± 1.69 | 1106.37 ± 1.82 | 4386.32 ± 2.48 | 1396.21 ± 1.23 |
V6 | 1670.25 ± 1.65 | 1081.76 ± 1.66 | 4372.40 ± 3.16 | 1391.78 ± 1.34 |
PEEK Sample | Contact Angle θ° | Surface Energy (mN/m) | |||
---|---|---|---|---|---|
θW° | θE° | Polar Part γp | Dispersive Part γd | Total SE, γgesamt | |
Untreated | 80.78 ± 2.03 | 57.87 ± 1.82 | 3.83 ± 2.51 | 18.07 ± 3.21 | 27.89 ± 5.72 |
V1 | 55.35 ± 4.42 | 38.52 ± 2.86 | 11.78 ± 8.22 | 33.39 ± 3.74 | 45.17 ± 11.96 |
V2 | 77.23 ± 2.46 | 68.25 ± 6.59 | 7.70 ± 3.49 | 21.16 ± 1.91 | 29.30 ± 5.39 |
V3 | 74.79 ± 1.73 | 64.46 ± 2.08 | 7.45 ± 7.29 | 20.14 ± 4.70 | 27.59 ± 11.99 |
V4 | 42.40 ± 4.12 | 32.10 ± 1.01 | 18.01 ± 7.54 | 41.34 ± 1.90 | 59.35 ± 9.44 |
V5 | 58.17 ± 0.85 | 30.73 ± 6.84 | 8.52 ± 3.89 | 34.47 ± 4.69 | 42.99 ± 8.58 |
V6 | 63.18 ± 5.15 | 25.88 ± 8.28 | 5.38 ± 7.41 | 37.48 ± 9.06 | 42.86 ± 16.47 |
PEEK | Average Diameter (µm) | Nickel Layer Thickness (µm) | ||
---|---|---|---|---|
Untreated | Plasma Torch Treated | Nickeled | ||
Multifilament yarn | 38.70 ± 0.32 | 40.43 ± 0.28 | 41.66 ± 0.16 | 1.25 ± 0.21 |
Monofilament yarn | 1455.21 ± 0.41 | 1404.28 ± 0.32 | 1407.64 ± 0.52 | 3.36 ± 0.52 |
PEEK | Breaking Force (N) | Tenacity (cN/tex) | Elongation (%) |
---|---|---|---|
Untreated | 14.0 ± 0.63 | 29.5 ± 1.33 | 31.0 ± 1.93 |
Plasma-torch-pretreated | 16.3 ± 0.53 | 34.7 ± 1.12 | 32.8 ± 1.52 |
Nickel-plated | 16.0 ± 0.67 | 22.6 ± 0.94 | 33.3 ± 1.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onggar, T.; Frankenbach, L.A.; Cherif, C. Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment. Coatings 2024, 14, 1424. https://doi.org/10.3390/coatings14111424
Onggar T, Frankenbach LA, Cherif C. Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment. Coatings. 2024; 14(11):1424. https://doi.org/10.3390/coatings14111424
Chicago/Turabian StyleOnggar, Toty, Leopold Alexander Frankenbach, and Chokri Cherif. 2024. "Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment" Coatings 14, no. 11: 1424. https://doi.org/10.3390/coatings14111424
APA StyleOnggar, T., Frankenbach, L. A., & Cherif, C. (2024). Investigations of the Interface Design of Polyetheretherketone Filament Yarn Considering Plasma Torch Treatment. Coatings, 14(11), 1424. https://doi.org/10.3390/coatings14111424