Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials
Abstract
:1. Introduction
2. Methods and Materials
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boice, J., Jr.; Dauer, L.T.; Kase, K.R.; Mettler, F.A., Jr.; Vetter, R.J. Evolution of radiation protection for medical workers. Br. J. Radiol. 2020, 93, 20200282. [Google Scholar] [CrossRef] [PubMed]
- Abualroos, N.J.; Baharul Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Boeykens, S.P.; Redondo, N.; Obeso, R.A.; Caracciolo, N.; Vázquez, C. Chromium and Lead adsorption by avocado seed biomass study through the use of Total Reflection X-ray fluorescence analysis. Appl. Radiat. Isot. 2019, 153, 108809. [Google Scholar] [CrossRef]
- de Souza, A.C.; Aristone, F.; Gouvea, A.F.G.; Fernandes, H.B.; Miyai, A.; Rossi, J. Characterization and measurement of gamma radiation shielding of a new tungsten-lignin composite. J. Compos. Mater. 2021, 55, 3579–3588. [Google Scholar] [CrossRef]
- Palanisami, S.; Dhandapani, V.S.; Jayachandran, V.; Muniappan, E.; Park, D.; Kim, B.; Govindasami, K. Investigation on physico chemical and X-ray shielding performance of zinc doped nano-WO3 epoxy composite for light weight lead free aprons. Materials 2023, 16, 3866. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and Shoshonite from the continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pac. Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Kim, H.; Lim, J.; Kim, J.; Lee, J.; Seo, Y. Multilayer structuring of nonleaded metal (BiSn)/polymer/tungsten composites for enhanced γ-ray shielding. Adv. Eng. Mater. 2020, 22, 1901448. [Google Scholar] [CrossRef]
- Kalkornsurapranee, E.; Kothan, S.; Intom, S.; Johns, J.; Kaewjaeng, S.; Kedkaew, C.; Chaiphaksa, W.; Sareein, T.; Kaewkhao, J. Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers. Radiat. Phys. Chem. 2021, 179, 109261. [Google Scholar] [CrossRef]
- Okafor, C.E.; Okonkwo, U.C.; Okokpujie, I.P. Trends in reinforced composite design for ionizing radiation shielding applications: A review. J. Mater. Sci. 2021, 56, 11631–11655. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef]
- Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of polymer-based composite materials as radiation shield. Radiat. Phys. Chem. 2021, 183, 109425. [Google Scholar] [CrossRef]
- Arif Sazali, M.; Alang Md Rashid, N.K.; Hamzah, K. A review on multilayer radiation shielding. IOP Conf. Ser. Mater. Sci. Eng. 2019, 555, 012008. [Google Scholar] [CrossRef]
- Hussein, K.I.; Alqahtani, M.S.; Grelowska, I.; Reben, M.; Afifi, H.; Zahran, H.; Yaha, I.S.; Yousef, E.S. Optically transparent glass modified with metal oxides for X-rays and gamma rays shielding material. J. X-Ray Sci. Technol. 2021, 29, 331–345. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced radiation shielding with conformal light-weight nanoparticle–polymer composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef] [PubMed]
- Gholamzadeh, L.; Asari-Shik, N.; Aminian, M.K.; Ghasemi-Nejad, M. A study of the shielding performance of fibers coated with high-Z oxides against ionizing radiations. Nucl. Instrum. Method Phys. Res. Sect. A 2020, 973, 164174. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Guo-hui, W.; Man-li, H.; Fan-chao, C.; Jun-dong, F.; Yao-dong, D. Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation. Prog. Nucl. Energy 2019, 112, 225–232. [Google Scholar] [CrossRef]
- Liang, D.; Shen, F.; Bao, Z.; Liu, Y.; Li, H. Research on textile materials for X-ray shielding. E3S Web Conf. 2021, 290, 01013. [Google Scholar] [CrossRef]
- Wasel, O.; Freeman, J.L. Comparative assessment of tungsten toxicity in the absence or presence of other metals. Toxics 2018, 6, 66. [Google Scholar] [CrossRef]
- Iwamiya, Y.; Kawai, M. Tungsten-coated cloth for radiation shielding made with the SilicaTech® coating technique. In Proceedings of the 14th International Workshop on Spallation Materials Technology (JAPAN), Fukushima, Japan, 11–16 November 2020. [Google Scholar] [CrossRef]
- Agar, O.; Sayyed, M.I.; Akman, F.; Tekin, H.O.; Kaçal, M.R. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 2019, 51, 853–859. [Google Scholar] [CrossRef]
- Akman, F.; Kaçal, M.R.; Sayyed, M.I.; Karataş, H.A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315–322. [Google Scholar] [CrossRef]
- Oshina, I.; Spigulis, J. Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations. J. Biomed. Opt. 2021, 26, 100901. [Google Scholar] [CrossRef]
- Özpolat, Ö.F.; Alım, B.; Şakar, E.; Büyükyıldız, M.; Kurudirek, M. Phy-X/ZeXTRa: A software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020, 59, 321–329. [Google Scholar] [CrossRef]
- Kaur, B.; Rani, N.; Vermani, Y.K.; Singh, T. Assigning effective atomic number and electron density for some lanthanide oxides over wide gamma-rays energies. AIP Conf. Proc. 2019, 2142, 120005. [Google Scholar] [CrossRef]
- Kılıçoğlu, Ö. An investigation on effective atomic numbers and mass attenuation coefficients of some bioactive glasses. Eur. J. Sci. Technol. 2019, 15, 168–175. [Google Scholar] [CrossRef]
- D’Souza, A.N.; Prabhu, N.S.; Sharmila, K.; Sayyed, M.I.; Somshekarappa, H.M.; Lakshminarayana, G.; Mandal, S.; Kamath, S.D. Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. J. Non-Cryst. Solids 2020, 542, 120136. [Google Scholar] [CrossRef]
- Safari, A.; Rafie, P.; Taeb, S.; Najafi, M.; Mortazavi, S.M.J. Development of lead-free materials for radiation shielding in medical settings: A review. J. Biomed. Phys. Eng. 2024, 14, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Thumwong, A.; Chinnawet, M.; Intarasena, P.; Rattanapongs, C.; Tokonami, S.; Ishikawa, T.; Saenboonruang, K. A comparative study on X-ray shielding and mechanical properties of natural rubber latex nanocomposites containing Bi2O3 or BaSO4: Experimental and numerical determination. Polymers 2022, 14, 3654. [Google Scholar] [CrossRef]
- E, J.J.; Panneerselvam, K. Investigation on the influence of tungsten particulate in mechanical and thermal properties of HD50MA180 high density polyethylene composites. Mater. Res. Express 2020, 7, 045306. [Google Scholar] [CrossRef]
- Obeid, A.; El, B.H.; El, S.O.; Alsayed, Z.; Awad, R.; Badawi, M.S. Effects of different nano size and bulk WO3 enriched by HDPE composites on attenuation of the X-ray narrow spectrum. Nucl. Technol. Radiat. Prot. 2021, 36, 315–328. [Google Scholar] [CrossRef]
- Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S. Preparation and characterization of nano WO3/Bi2O3/GO and BaSO4/GO dispersed HDPE composites for X-ray shielding application. Polyolefins J. 2022, 9, 73–83. [Google Scholar] [CrossRef]
- Liang, X.; Gao, G.; Wu, G. Statistical analysis on hollow and core-shell structured vanadium oxide microspheres as cathode materials for lithium ion batteries. Data Brief 2018, 18, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Korean Standards Association. Testing Method of Lead Equivalent for X-Ray Protective Devices; Korean Standards Association: Seoul, Republic of Korea, 2017; Volume 17, p. 4025. [Google Scholar]
- ALMisned, G.; Akman, F.; AbuShanab, W.S.; Tekin, H.O.; Kaçal, M.R.; Issa, S.A.M.; Polat, H.; Oltulu, M.; Ene, A.; Zakaly, H.M.H. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polymers 2021, 13, 3157. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S. Research progress with membrane shielding materials for electromagnetic/radiation contamination. Membranes 2023, 13, 315. [Google Scholar] [CrossRef]
- Vignesh, S.; Winowlin Jappes, J.T.; Nagaveena, S.; Krishna Sharma, R.; Adam Khan, M.; More, C.V.; Rajini, N.; Varol, T. Development of lightweight polymer laminates for radiation shielding and electronics applications. Int. J. Polym. Sci. 2022, 2022, 5252528. [Google Scholar] [CrossRef]
- Budumuru, S.; Rao, S.S.; Jenjeti, D.; Suri Apparao, T.V. Shielding effectiveness of multilayer laminate of aluminum metal matrix and micro absorbing materials. MethodsX 2023, 10, 102172. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nanomicro Lett. 2021, 13, 181. [Google Scholar] [CrossRef]
- Gilys, L.; Griškonis, E.; Griškevičius, P.; Adlienė, D. Lead free multilayered polymer composites for radiation shielding. Polymers 2022, 14, 1696. [Google Scholar] [CrossRef]
- Fan, W.C.; Drumm, C.R.; Roeske, S.B.; Scrivner, G.J. Shielding considerations for satellite microelectronics. IEEE Trans. Nucl. Sci. 1996, 43, 2790–2796. [Google Scholar] [CrossRef]
- Klamm, B. Passive space radiation shielding: Mass and volume optimization of tungsten-doped polyphenolic and polyethylene resins. In Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–13 August 2015. [Google Scholar]
- Li, X.; Warden, D.; Bayazitoglu, Y. Analysis to evaluate multilayer shielding of galactic cosmic rays. J. Thermophys. Heat Transf. 2018, 32, 525–531. [Google Scholar] [CrossRef]
- Chang, Q.; Guo, S.; Zhang, X. Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Mater. Des. 2023, 233, 112253. [Google Scholar] [CrossRef]
Sheet Types | Weight (kg/m2) | Thickness (mm) | Density (g/cm3) |
---|---|---|---|
Barium sulfate (BaSO4) | 3.1 ± 0.039 | 0.3 ± 0.010 | 10.333 ± 0.010 |
Bismuth oxide (Bi2O3) | 2.9 ± 0.030 | 0.3 ± 0.011 | 9.667 ± 0.021 |
Tungsten oxide (WO3) | 2.7 ± 0.051 | 0.3 ± 0.012 | 9.766 ± 0.025 |
Array sheet (three sheets) | 9.4 ± 0.011 | 1.1 ± 0.051 | 8.545 ± 0.032 |
Mixed sheets (one sheet) | 8.6 ± 0.013 | 0.9 ± 0.012 | 9.556 ± 0.031 |
RPE (%) ± SD (%) | |||||
---|---|---|---|---|---|
X-Ray Tube Voltage (kVp) | Lead | W/Bi/Ba | Ba/Bi/W | Bi/W/Ba | Ba/W/Bi |
40 | 100 ± 0.2 | 96 ± 0.1 | 91 ± 0.0 | 91 ± 0.2 | 90 ± 0.0 |
60 | 98 ± 0.0 | 93 ± 0.2 | 88 ± 0.2 | 89 ± 0.0 | 88 ± 0.3 |
80 | 95 ± 0.0 | 89 ± 0.0 | 85 ± 0.0 | 84 ± 0.1 | 84 ± 0.1 |
100 | 94 ± 0.1 | 85 ± 0.0 | 80 ± 0.0 | 78 ± 0.1 | 78 ± 0.1 |
120 | 91 ± 0.0 | 82 ± 0.2 | 78 ± 0.3 | 75 ± 0.0 | 76 ± 0.2 |
RPE (%) | |||||
---|---|---|---|---|---|
Tube Voltage (kVp) | W | Bi | Ba | Mixed Sheet | Lead |
W/Bi/Ba | |||||
40 | 96 ± 0.2 | 85 ± 0.1 | 78 ± 0.0 | 92 ± 0.1 | 100 ± 0.0 |
60 | 95 ± 0.0 | 82 ± 0.0 | 75 ± 0.0 | 88 ± 0.2 | 98 ± 0.2 |
80 | 92 ± 0.1 | 78 ± 0.1 | 70 ± 0.2 | 84 ± 0.1 | 95 ± 0.1 |
100 | 91 ± 0.0 | 75 ± 0.1 | 68 ± 0.0 | 80 ± 0.0 | 94 ± 0.1 |
120 | 90 ± 0.2 | 70 ± 0.0 | 60 ± 0.1 | 74 ± 0.0 | 91 ± 0.0 |
RPE (%) | |||
---|---|---|---|
Tube Voltage (kVp) | Mixed Sheet | Single Material Sheets | Lead |
40 | 94 ± 0.0 | 96 ± 0.1 | 100 ± 0.2 |
60 | 90 ± 0.1 | 93 ± 0.0 | 98 ± 0.0 |
80 | 87 ± 0.1 | 89 ± 0.1 | 95 ± 0.0 |
100 | 85 ± 0.2 | 85 ± 0.0 | 94 ± 0.1 |
120 | 84 ± 0.0 | 82 ± 0.0 | 91 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Yun, J.-H.; Byun, H.-S.; Hou, J. Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings 2024, 14, 1450. https://doi.org/10.3390/coatings14111450
Kim S-C, Yun J-H, Byun H-S, Hou J. Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings. 2024; 14(11):1450. https://doi.org/10.3390/coatings14111450
Chicago/Turabian StyleKim, Seon-Chil, Jae-Han Yun, Hong-Sik Byun, and Jian Hou. 2024. "Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials" Coatings 14, no. 11: 1450. https://doi.org/10.3390/coatings14111450
APA StyleKim, S. -C., Yun, J. -H., Byun, H. -S., & Hou, J. (2024). Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings, 14(11), 1450. https://doi.org/10.3390/coatings14111450