Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection
Abstract
:1. Introduction
2. Experiment
2.1. Surface Activation
2.2. Bonding Process
3. Results and Discussion
3.1. Atomic Force Microscopy (AFM) Analysis of Cu Surface
3.2. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Cu Surface
3.3. Scanning Acoustic Microscopy (SAM) Analysis
3.4. I–V Test
3.5. Shear Test
3.6. Transmission Electron Microscopy (TEM) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.; Cheng, P.; Shah, P.; Wilkerson, B.; Swaminathan, R.; Wuu, J.; Mandalapu, C. 3D Packaging for Heterogeneous Integration. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 1103–1107. [Google Scholar] [CrossRef]
- Agarwal, R.; Kannan, S.; England, L.; Reed, R.; Song, Y.; Lee, W.; Lee, S.; Yoo, J. 3D Packaging Challenges for High-End Applications. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1249–1256. [Google Scholar] [CrossRef]
- Oh, B.H.; Loo, H.Y.; Oh, P.T.; Lee, E.K. Challenges in Stacked CSP Packaging Technology. In Proceedings of the 2006 International Conference on Electronic Materials and Packaging, Kowloon, China, 11–14 December 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Tian, Y.; Fang, H.; Ren, N.; Zhao, Y.; Chen, B.; Wu, F.; Paik, K.-W. Reliable Single-Phase Micro-Joints with High Melting Point for 3D TSV Chip Stacking. J. Alloys Compd. 2020, 828, 154468. [Google Scholar] [CrossRef]
- Suga, T.; He, R.; Vakanas, G.; La Manna, A. Direct Cu to Cu Bonding and Alternative Bonding Techniques in 3D Packaging. In 3D Microelectronic Packaging: From Architectures to Applications; Li, Y., Goyal, D., Eds.; Springer Series in Advanced Microelectronics; Springer: Singapore, 2021; pp. 201–231. ISBN 9789811570902. [Google Scholar]
- Kagawa, Y.; Fujii, N.; Aoyagi, K.; Kobayashi, Y.; Nishi, S.; Todaka, N.; Takeshita, S.; Taura, J.; Takahashi, H.; Nishimura, Y.; et al. An Advanced CuCu Hybrid Bonding for Novel Stacked CMOS Image Sensor. In Proceedings of the 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, Japan, 13–16 March 2018; pp. 65–67. [Google Scholar] [CrossRef]
- Gao, G.; Mirkarimi, L.; Fountain, G.; Suwito, D.; Theil, J.; Workman, T.; Uzoh, C.; Guevara, G.; Lee, B.; Huyhn, M.; et al. Low Temperature Hybrid Bonding for Die to Wafer Stacking Applications. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 383–389. [Google Scholar] [CrossRef]
- Nagano, F.; Inoue, F.; Phommahaxay, A.; Peng, L.; Chancerel, F.; Naser, H.; Beyer, G.; Uedono, A.; Beyne, E.; Gendt, S.D.; et al. Origin of Voids at the SiO2/SiO2 and SiCN/SiCN Bonding Interface Using Positron Annihilation Spectroscopy and Electron Spin Resonance. ECS J. Solid State Sci. Technol. 2023, 12, 033002. [Google Scholar] [CrossRef]
- Kim, T.; Howlader, M.; Itoh, T.; Suga, T. Room Temperature Cu–Cu Direct Bonding Using Surface Activated Bonding Method. J. Vac. Sci. Technol. Vac. Surf. Films 2003, 21, 449–453. [Google Scholar] [CrossRef]
- Park, M.; Baek, S.; Kim, S.; Kim, S.E. Argon Plasma Treatment on Cu Surface for Cu Bonding in 3D Integration and Their Characteristics. Appl. Surf. Sci. 2015, 324, 168–173. [Google Scholar] [CrossRef]
- Tanaka, K.; Wang, W.-S.; Baum, M.; Froemel, J.; Hirano, H.; Tanaka, S.; Wiemer, M.; Otto, T. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding. Micromachines 2016, 7, 234. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, S.; Kim, S.E. Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding. J. Microelectron. Packag. Soc. 2021, 28, 59–64. [Google Scholar]
- Bonam, S.; Panigrahi, A.K.; Kumar, C.H.; Vanjari, S.R.K.; Singh, S.G. Interface and Reliability Analysis of Au-Passivated Cu–Cu Fine-Pitch Thermocompression Bonding for 3-D IC Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1227–1234. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Chien, Y.-S.; Tzeng, R.-N.; Shy, M.-S.; Lin, T.-H.; Chen, K.-H.; Chiu, C.-T.; Chiou, J.-C.; Chuang, C.-T.; Hwang, W.; et al. Novel Cu-to-Cu Bonding with Ti Passivation at 180 °C in 3-D Integration. IEEE Electron Device Lett. 2013, 34, 1551–1553. [Google Scholar] [CrossRef]
- Panigrahi, A.K.; Bonam, S.; Ghosh, T.; Vanjari, S.R.K.; Singh, S.G. High Quality Fine-Pitch Cu-Cu Wafer-on-Wafer Bonding with Optimized Ti Passivation at 160 °C. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1791–1796. [Google Scholar] [CrossRef]
- Panigrahi, A.K.; Ghosh, T.; Vanjari, S.R.K.; Singh, S.G. Demonstration of Sub 150 °C Cu-Cu Thermocompression Bonding for 3D IC Applications, Utilizing an Ultra-Thin Layer of Manganin Alloy as an Effective Surface Passivation Layer. Mater. Lett. 2017, 194, 86–89. [Google Scholar] [CrossRef]
- Hsieh, J.; Fong, L.; Yi, S.; Metha, G. Plasma Cleaning of Copper Leadframe with Ar and Ar/H2 Gases. Surf. Coat. Technol. 1999, 112, 245–249. [Google Scholar] [CrossRef]
- Tang, Y.-S.; Chang, Y.-J.; Chen, K.-N. Wafer-Level Cu–Cu Bonding Technology. Microelectron. Reliab. 2012, 52, 312–320. [Google Scholar] [CrossRef]
- Chen, K.-N.; Tan, C.; Fan, A.; Reif, R. Copper Bonded Layers Analysis and Effects of Copper Surface Conditions on Bonding Quality for Three-Dimensional Integration. J. Electron. Mater. 2005, 34, 1464–1467. [Google Scholar] [CrossRef]
- Gondcharton, P.; Imbert, B.; Benaissa, L.; Verdier, M. Voiding Phenomena in Copper-Copper Bonded Structures: Role of Creep. ECS J. Solid State Sci. Technol. 2015, 4, P77. [Google Scholar] [CrossRef]
- Seo, H.; Park, H.S.; Kim, S.E. Two-Step Plasma Treatment on Sputtered and Electroplated Cu Surfaces for Cu-to-Cu Bonding Application. Appl. Sci. 2019, 9, 3535. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Leu, J.; Lin, B.-H.; Wang, Y.-L.; Cheng, Y.-L. Comparison of H2 and NH3 Treatments for Copper Interconnects. Adv. Mater. Sci. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Ito, F.; Shobha, H.; Tagami, M.; Nogami, T.; Cohen, S.; Ostrovski, Y.; Molis, S.; Maloney, K.; Femiak, J.; Protzman, J.; et al. Effective Cu Surface Pre-Treatment for High-Reliable 22 Nm-Node Cu Dual Damascene Interconnects with High Plasma Resistant Ultra Low-k Dielectric (K = 2.2). Microelectron. Eng. 2012, 92, 62–66. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, W.; He, Z.; Liu, Q.; Chen, H.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Regulating Surface Oxygen Species on Copper (I) Oxides via Plasma Treatment for Effective Reduction of Nitrate to Ammonia. Appl. Catal. B Environ. 2022, 305, 121021. [Google Scholar] [CrossRef]
- Park, H.; Seo, H.; Kim, S.E. Anti-Oxidant Copper Layer by Remote Mode N2 Plasma for Low Temperature Copper–Copper Bonding. Sci. Rep. 2020, 10, 21720. [Google Scholar] [CrossRef]
- Shie, K.-C.; Gusak, A.; Tu, K.-N.; Chen, C. A Kinetic Model of Copper-to-Copper Direct Bonding under Thermal Compression. J. Mater. Res. Technol. 2021, 15, 2332–2344. [Google Scholar] [CrossRef]
- Jang, E.-J.; Kim, J.-W.; Kim, B.; Matthias, T.; Park, Y.-B. Annealing Temperature Effect on the Cu-Cu Bonding Energy for 3D-IC Integration. Met. Mater. Int. 2011, 17, 105–109. [Google Scholar] [CrossRef]
- Wu, C.-K.; Yin, M.; O’Brien, S.; Koberstein, J.T. Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-Ray Photoelectron Spectroscopy. Chem. Mater. 2006, 18, 6054–6058. [Google Scholar] [CrossRef]
- Kautek, W.; Gordon, J.G. XPS Studies of Anodic Surface Films on Copper Electrodes. J. Electrochem. Soc. 1990, 137, 2672. [Google Scholar] [CrossRef]
- Noguchi, J.; Ohashi, N.; Yamaguchi, H.; Takeda, K. Dependence of Time-Dependent Dielectric Breakdown Lifetime on NH3-Plasma Treatment in Cu Interconnects. Jpn. J. Appl. Phys. 2005, 44, 4859. [Google Scholar] [CrossRef]
- Yu, A.; Hu, R.; Liu, W.; Zhang, R.; Zhang, J.; Pu, Y.; Chu, L.; Yang, J.; Li, X. Preparation and Characterization of Mn Doped Copper Nitride Films with High Photocurrent Response. Curr. Appl. Phys. 2018, 18, 1306–1312. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Zhu, Y.; Boscoboinik, J.A.; Zhou, G. Insight into the Phase Transformation Pathways of Copper Oxidation: From Oxygen Chemisorption on the Clean Surface to Multilayer Bulk Oxide Growth. J. Phys. Chem. C 2018, 122, 26519–26527. [Google Scholar] [CrossRef]
- Sreedharan, R.; Mohan, M.; Saini, S.; Roy, A.; Bhattacharjee, K. Intermediate Cu-O-Si Phase in the Cu-SiO2/Si (111) System: Growth, Elemental, and Electrical Studies. ACS Omega 2021, 6, 23826–23836. [Google Scholar] [CrossRef]
- Seo, H.; Park, H.S.; Kim, G.; Park, Y.-B.; Kim, S.E. Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer. J. Microelectron. Packag. Soc. 2020, 27, 55–60. [Google Scholar] [CrossRef]
- Wang, D.; Nakamine, N.; Hayashi, Y. Properties of Various Sputter-Deposited Cu–N Thin Films. J. Vac. Sci. Technol. Vac. Surf. Films 1998, 16, 2084–2092. [Google Scholar] [CrossRef]
Sample Number | Gas | Power (W) | Flow Rate (sccm) | Pressure (Torr) | Time (s) |
---|---|---|---|---|---|
1 | Ar | 300 | 50 | 1 | 30 |
2 | NH3 (50%)/Ar | 300 | NH3 25/Ar 25 | 1 | 30 |
3 | NH3 (90%)/Ar | 300 | NH3 45/Ar 5 | 1 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.J.; Hong, S.J. Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection. Coatings 2024, 14, 1449. https://doi.org/10.3390/coatings14111449
Jeon HJ, Hong SJ. Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection. Coatings. 2024; 14(11):1449. https://doi.org/10.3390/coatings14111449
Chicago/Turabian StyleJeon, Ho Jeong, and Sang Jeen Hong. 2024. "Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection" Coatings 14, no. 11: 1449. https://doi.org/10.3390/coatings14111449
APA StyleJeon, H. J., & Hong, S. J. (2024). Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection. Coatings, 14(11), 1449. https://doi.org/10.3390/coatings14111449