Etching Processing of InGaAs/InAlAs Quantum Cascade Laser
Abstract
:1. Introduction
2. Principles and Experiments
2.1. QCL Working Principle
2.2. QCL Epitaxial Structure
2.3. QCL Chip Process
3. Results and Discussion
3.1. Topographic Characterization
3.2. Test Results of Chip Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Razeghi, M.; Lu, Q.Y.; Bandyopadhyay, N.; Zhou, W.; Heydari, D.; Bai, Y.; Slivken, S. Quantum cascade lasers: From tool to product. Opt. Express 2015, 23, 8462–8475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, J.; Liu, C.; Wang, L.; Liu, J.; Liu, F. Progress in mid-and far-infrared quantum cascade laser (invited). Infrared Laser Eng. 2018, 47, 8–17. [Google Scholar]
- Kosterev, A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.; Curl, R.F. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 2008, 90, 165–176. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, H.; Li, M.; Lin, W.; Shen, Z.; Zhang, J.; Fan, Z. Laser technology for direct IR countermeasure system. Infrared Laser Eng. 2018, 47, 150–159. [Google Scholar]
- Isensee, K.; Kröger-Lui, N.; Petrich, W. Biomedical applications of mid-infrared quantum cascade lasers–a review. Analyst 2018, 143, 5888–5911. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Sirtori, C. Free space optical communication in the mid-IR for future long-range terrestrial and space applications. Opt. Wirel. Commun. Technol. 2023, 2, 9–12. [Google Scholar]
- Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Hutchinson, A.L.; Cho, A.Y. Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl. Phys. Lett. 1995, 67, 3057–3059. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, M.; Aellen, T.; Faist, J. High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm. Appl. Phys. Lett. 2001, 78, 396–398. [Google Scholar] [CrossRef]
- Evans, A.; Yu, J.S.; Slivken, S.; Razeghi, M. Continuous-wave operation of λ∼4.8 μm quantum-cascade lasersat room temperature. Appl. Phys. Lett. 2004, 85, 2166–2168. [Google Scholar] [CrossRef]
- Lu, X.; Liu, F.; Liu, J.; Jin, P.; Wang, Z. Room temperature operation of strain-compensated 5.5 μm quantum cascade lasers. Chin. J. Semi. 2005, 26, 2267–2270. [Google Scholar]
- Slivken, S.; Yu, J.S.; Evans, A.; David, J.; Doris, L.; Razeghi, M. Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation. IEEE Photonics Technol. Lett. 2004, 16, 744–746. [Google Scholar] [CrossRef]
- Evans, A.; Darvish, S.R.; Slivken, S.; Nguyen, J.; Bai, Y.; Razeghi, M. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett. 2007, 91, 071101. [Google Scholar] [CrossRef]
- Bai, Y.; Darvish, S.R.; Slivken, S.; Zhang, W.; Evans, A.; Nguyen, J.; Razeghi, M. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 2008, 92, 101105. [Google Scholar] [CrossRef]
- Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Slivken, S.; Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 2011, 98, 181102. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Wang, L.; Chen, J.; Zhai, S.; Liu, J.; Wang, Z. High performance surface grating distributed feedback quantum cascade laser. IEEE Photonics Technol. Lett. 2013, 25, 686–689. [Google Scholar] [CrossRef]
- Pang, L.; Cheng, Y.; Zhao, W.; Tan, S.; Guo, Y.; Li, B.; Wang, J.; Zhou, D. Mid-infrared quantum cascade laser grown by MOCVD at 4.6 µm. Infrared Laser Eng. 2022, 51, 189–194. [Google Scholar]
- Fei, T.; Zhai, S.; Zhang, J.; Lu, Q.; Zhuo, N.; Liu, J.; Wang, L.; Liu, S.; Jia, Z.; Li, K.; et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition. Photonics 2023, 10, 47. [Google Scholar] [CrossRef]
- Bewley, W.; Canedy, C.; Kim, C.S.; Kim, M.; Lindle, J.R.; Abell, J.; Vurgaftman, I.; Meyer, J. Ridge-width dependence of midinfrared interband cascade laser characteristics. Opt. Eng. 2010, 49, 111116. [Google Scholar] [CrossRef]
- Wittmann, A. High-Performance Quantum Cascade Laser Sources for Spectroscopic Applications. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2009. [Google Scholar]
Number | Layers | Materials | Thickness (nm) | Doping(cm−3) |
---|---|---|---|---|
7 | Highly Doped Layer | InP | 400 | n, Si, 2 × 1019 |
6 | Gradually Doped Layer | InP | 150 | n, Si, 1~3 × 1017 |
5 | Upper Cladding | InP | 2600 | n, Si, 3 × 1016 |
4 | Waveguide Layer | InGaAs | 300 | n, Si, 4 × 1016 |
3 | Active Region (×28) | In0.669Ga0.331As/In0.362Al0.638As | 1410 | |
2 | Waveguide Layer | InGaAs | 300 | n, Si, 4 × 1016 |
1 | Lower Cladding | InP | 1350 | n, Si, 2.2 × 1016 |
Substrate | InP | 400 | n, Si, 3 × 1017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhu, Y.; Xu, D.; Li, Z.; Qu, Y.; Qiao, Z.; Liu, G.; Zhao, Z.; Zeng, L.; Chen, H.; et al. Etching Processing of InGaAs/InAlAs Quantum Cascade Laser. Coatings 2024, 14, 1448. https://doi.org/10.3390/coatings14111448
Wu Q, Zhu Y, Xu D, Li Z, Qu Y, Qiao Z, Liu G, Zhao Z, Zeng L, Chen H, et al. Etching Processing of InGaAs/InAlAs Quantum Cascade Laser. Coatings. 2024; 14(11):1448. https://doi.org/10.3390/coatings14111448
Chicago/Turabian StyleWu, Qi, Yana Zhu, Dongxin Xu, Zaijin Li, Yi Qu, Zhongliang Qiao, Guojun Liu, Zhibin Zhao, Lina Zeng, Hao Chen, and et al. 2024. "Etching Processing of InGaAs/InAlAs Quantum Cascade Laser" Coatings 14, no. 11: 1448. https://doi.org/10.3390/coatings14111448
APA StyleWu, Q., Zhu, Y., Xu, D., Li, Z., Qu, Y., Qiao, Z., Liu, G., Zhao, Z., Zeng, L., Chen, H., & Li, L. (2024). Etching Processing of InGaAs/InAlAs Quantum Cascade Laser. Coatings, 14(11), 1448. https://doi.org/10.3390/coatings14111448