Coupling APS/SPS Techniques for Cu-TiO2 Antibacterial Coating Deposition: Application to Water Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Spray (PS) Coatings
2.2. Physical/Chemical Characterizations of the Coatings
2.3. Antibacterial Test Protocol
2.3.1. Step 1: Bacterial Culture and Test Suspension Preparation
2.3.2. Step 2: Bacterial Inoculation of the Sample Surface
2.3.3. Step 3: Bacteria Collection and Counting by Culture Technique
2.4. Flow Cytometry Analysis (FCM)
2.5. Photocatalytic Antibacterial Test in Wastewater
3. Results
3.1. Copper Powder and Water-Based Suspension Characterizations
3.2. Observation of Coatings and Surface Composition
3.3. Cross-Section and Microstructure Observation of the Coatings
3.4. Surface Topography and Wettability
3.5. Identification of Crystalline Phases
3.6. Antibacterial Efficacy Results
3.7. Flow Cytometry Results (FCM)
3.8. Bacterial Tests in Reclaimed Water
4. Discussions
4.1. Discussion of the Suspension Properties
4.2. Interpretation of the Morphology of Coatings
4.3. Intrinsic Properties of the Coatings
4.4. Discussion of the Surface State of the Coatings
4.5. Crystalline Structure of the Coatings Compared to the Starting Material
4.6. Interpreting the Antibacterial Performance of Coatings
5. Conclusions
- (1)
- A rotating substrate holder allows the deposition of relatively thin Cu, TiO2, and Cu-TiO2 coatings at each cycle because the samples are not constantly in front of the torch. This facilitates heat and stress removal;
- (2)
- XPS results showed the presence of both metallic Cu and CuO on the surface. The antimicrobial mechanism is reported to be direct with Cu and complex-dependent with Cu ions released from CuO. As for TiO2, oxygen vacancies and Ti3+ ions were detected in the coating. This is due to the reducing atmosphere (H2), which also gives TiO2 a blue color. Further Cu oxidation was observed in Cu-TiO2, but TiO2 was detected in the XRD patterns;
- (3)
- Sandblasting is important to increase the capillarity and the surface contact for more hydrophilicity. For this reason, sandblasting of the 304L SS substrate is very important in addition to being critical for the Cu coating adhesion. Cu coatings were hydrophobic due to hydrocarbon deposition, while TiO2 showed hydrophilic behavior due to the surface hydroxide groups on the surface. This wettability is lost when combined with Cu;
- (4)
- The bacterial reduction reached 6.4 log on Cu after 1 h, exceeding the sterilization threshold, while on sandblasted 304L SS, it barely exceeded decontamination (2 log). This result is remarkable compared to those of the literature and a kinetic follow-up should be performed to estimate the exact interval to eliminate all the E. coli. As expected, TiO2 was less efficient, and a decrease in efficiency was observed on Cu-TiO2 without illumination;
- (5)
- The flow cytograms showed significant bacterial inhibition on the coatings compared to the bare substrates. However, the percentage of dead bacteria was not very high on the samples analyzed directly by FCM after contact. Nanometric TiO2 switched the mechanism from inhibition to killing due to its high surface area. Counting by culture technique does not allow differentiation between the two behaviors;
- (6)
- The tests in water contaminated with E. coli showed the same tendency as on the surface, according to ASTM2180. However, the photocatalytic effect of TiO2 on bacterial elimination was demonstrated after 380 nm light irradiation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2015, 80, 91–138. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Dollwet, H.H.A.; Sorenson, J.R.J. Historic uses of copper compounds in medicine. J. Trace Elem. Med. Biol. 1985, 2, 80–87. [Google Scholar]
- Li, B.; Luo, Y.; Zheng, Y.; Liu, X.; Tan, L.; Wu, S. Two-dimensional Antibacterial Materials. Prog. Mater. Sci. 2022, 130, 100976. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Setayeshmehr, M.; Bakhsheshi-Rad, H.R.; Emadi, R.; Kharaziha, M.; Poursamar, S.A.; Ismail, A.F.; Sharif, S.; Chen, X.; Berto, F. A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers 2022, 14, 2238. [Google Scholar] [CrossRef]
- Ye, L.; Cao, Z.; Liu, X.; Cui, Z.; Li, Z.; Liang, Y.; Zhu, S.; Wu, S. Noble metal-based nanomaterials as antibacterial agents. J. Alloys Compd. 2022, 904, 164091. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef]
- Beltsios, E.; Zubarevich, A.; Ruemke, S.; Rubalskii, E.; Osswald, A.; Rad, A.A.; Heidenau, F.; Buer, J.; Hanke, J.; Schmitto, J.; et al. Antibacterial copper-filled TiO2 coating of cardiovascular implants to prevent infective endocarditis—A pilot study. Artif. Organs 2024, 48, 356–364. [Google Scholar] [CrossRef]
- Rutkowska-Gorczyca, M.; Molska, J.; Grygier, D. The effect of titanium dioxide modification on the copper powder bactericidal properties. Eng. Biomater. 2019, 22, 15–19. [Google Scholar]
- Rutkowska-Gorczyca, M.; Ptak, A.; Winnicki, M. Analysis of the tribological properties of Cu-aTiO2 composite coatings applied by the cold spray method. Tribologia 2020, 292, 51–57. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Yulikayani, P.Y.; Aprilita, N.H. Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 for photodegradation of amoxicillin in water. J. Environ. Sci. 2020, 11, 670–683. [Google Scholar]
- Eessaa, A.K.; Elkady, O.A.; El-Shamy, A.M. Powder metallurgy as a perfect technique for preparation of Cu–TiO2 composite by identifying their microstructure and optical properties. Sci. Rep. 2023, 13, 7034. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Lee, Y.-T.; Huang, T.-C.; Lin, G.-S.; Chen, Y.-W.; Lee, B.-S.; Tung, K.-L. In Vitro Bioactivity and Antibacterial Activity of Strontium-, Magnesium-, and Zinc-Multidoped Hydroxyapatite Porous Coatings Applied via Atmospheric Plasma Spraying. ACS Appl. Bio Mater. 2021, 4, 2523–2533. [Google Scholar] [CrossRef]
- Zaborowska, M.; Welch, K.; Brånemark, R.; Khalilpour, P.; Engqvist, H.; Thomsen, P.; Trobos, M. Bacteria-material surface interactions: Methodological development for the assessment of implant surface induced antibacterial effects. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 179–187. [Google Scholar] [CrossRef]
- Toma, F.-L.; Bertrand, G.; Begin, S.; Meunier, C.; Barres, O.; Klein, D.; Coddet, C. Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Appl. Catal. B Environ. 2006, 68, 74–84. [Google Scholar] [CrossRef]
- Cabral, J.P.S. Water Microbiology. Bacterial Pathogens and Water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- ASTM E2180-18; Standard Test Method for Determining the Effectiveness of Antimicrobial Substances in Polymeric or Hydrophobic Materials. ASTM: West Conshohocken, PA, USA, 2018.
- Salah, I.; Parkin, I.P.; Allan, E. Copper as an Antimicrobial Agent: Recent Advances. RSC Adv. 2021, 11, 18179–18186. [Google Scholar] [CrossRef]
- Kolek, J.; Branska, B.; Drahokoupil, M.; Patakova, P.; Melzoch, K. Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol. Lett. 2016, 363, fnw031. [Google Scholar] [CrossRef]
- Mishra, V.; Warshi, M.K.; Sati, A.; Kamboj, A.K.; Kumar, R.; Sagdeo, P.R. Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy. SN Appl. Sci. 2019, 1, 241. [Google Scholar] [CrossRef]
- Naina, H.K.; Gupta, R.; Setia, H.; Wanchoo, R.K. Viscosity and Specific Volume of TiO2/Water Nanofluid. J. Nanofluids 2012, 1, 161–165. [Google Scholar] [CrossRef]
- Mintcheva, N.; Yamaguchi, S.; Kulinich, S.A. Hybrid TiO2-ZnO Nanomaterials Prepared Using Laser Ablation in Liquid. Materials 2020, 13, 719. [Google Scholar] [CrossRef]
- Phul, R.; Farooq, U.; Ahmad, T. Ascorbic acid assisted synthesis, characterization and catalytic application of copper nanoparticles. Mater. Sci. Eng. Int. J. 2018, 2, 90–94. [Google Scholar] [CrossRef]
- Pawar, S.M.; Kim, J.; Inamdar, A.I.; Woo, H.; Jo, Y.; Pawar, B.S.; Cho, S.; Kim, H.; Im, H. Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Sci. Rep. 2016, 6, 21310. [Google Scholar] [CrossRef]
- Morad, I.; El-Desoky, M.M.; Mansour, A.F.; Wasfy, M.H. Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol-gel technique. J. Mater. Sci. Mater. Electron. 2020, 31, 17574–17584. [Google Scholar] [CrossRef]
- Wang, L.; Juncai, S. Molybdenum modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Renew. Sustain. Energy 2013, 5, 021407. [Google Scholar] [CrossRef]
- Reuse of Treated Wastewater for Watering or Irrigation; Report of the French Food Safety Agency; French Agency for Food Safety: Maisons-Alfort, France, 2008. (In French)
- Grumbles, B.H.; Gilman, P.; Schafer, J.E. Guidelines for Water Reuse; United States Environmental Protection Agency: Washington, DC, USA, 2004.
- Sundar, L.S.; Farooky, M.H.; Sarada, S.N.; Singh, M.K. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int. Commun. Heat Mass Transf. 2013, 41, 41–46. [Google Scholar] [CrossRef]
- Das, P.K.; Mallik, A.K.; Ganguly, R.; Santra, A.K. Synthesis and characterization of TiO2–water nanofluids with different surfactants. Int. Commun. Heat Mass Transf. 2016, 75, 341–348. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sarkar, I.; Behera, D.K.; Pal, S.K.; Chakraborty, S. Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technol. 2017, 307, 10–24. [Google Scholar] [CrossRef]
- Chevalier, J.; Tillement, O.; Ayela, F. Rheological properties of nanofluids flowing through microchannels. Appl. Phys. Lett. 2007, 91, 233103. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 2007, 444, 333–337. [Google Scholar] [CrossRef]
- Tseng, W.J.; Lin, K.C. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater. Sci. Eng. A 2003, 355, 186–192. [Google Scholar] [CrossRef]
- Alphonse, P.; Bleta, R.; Soules, R. Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J. Colloid Interface Sci. 2009, 337, 81–87. [Google Scholar] [CrossRef]
- Friis, M.; Persson, C.; Wigren, J. Influence of particle in-flight characteristics on the microstructure of atmospheric plasma sprayed yttria stabilized ZrO2. Surf. Coat. Technol. 2001, 141, 115–127. [Google Scholar] [CrossRef]
- Aubignat, E.; Planche, M.P.; Allimant, A.; Billières, D.; Girardot, L.; Bailly, Y.; Montavon, G. Effect of suspension characteristics on in-flight particle properties and coating microstructures achieved by suspension plasma spray. J. Phys. Conf. Ser. 2014, 550, 012019. [Google Scholar] [CrossRef]
- Ranjan, A.; Islam, A.; Pathak, M.; Khan, M.K.; Keshri, A.K. Plasma sprayed copper coatings for improved surface and mechanical properties. Vacuum 2019, 168, 108834. [Google Scholar] [CrossRef]
- Yang, Y.C.; Chang, E. The bonding of plasma-sprayed hydroxyapatite coatings to titanium: Effect of processing, porosity and residual stress. Thin Solid Films 2003, 444, 260–275. [Google Scholar] [CrossRef]
- Lee, Y.J.; Putri, L.K.; Ng, B.-J.; Tan, L.-L.; Wu, T.Y.; Chai, S.-P. Blue TiO2 with tunable oxygen-vacancy defects for enhanced photocatalytic diesel oil degradation. Appl. Surf. Sci. 2023, 611, 155716. [Google Scholar] [CrossRef]
- Yu, J.; Nguyen, C.T.K.; Lee, H. Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis. In Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, D.L.T.; Nguyen, V.-H.; Le, T.-H.; Vo, D.-V.N.; Trinh, Q.T.; Bae, S.-R.; Chae, S.Y.; Kim, S.Y.; Van Le, Q. Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials 2020, 10, 337. [Google Scholar] [CrossRef]
- Irodia, R.; Ungureanu, C.; Sătulu, V.; Mîndroiu, V.M. Photocatalyst Based on Nanostructured TiO2 with Improved Photocatalytic and Antibacterial Properties. Materials 2023, 16, 7509. [Google Scholar] [CrossRef]
- Jiang, A.; Chen, X.; Xu, Y.; Shah, K.J.; You, Z. One-step hydrothermal generation of oxygen-deficient N-doped blue TiO2–Ti3C2 for degradation of pollutants and antibacterial properties. Environ. Res. 2023, 235, 116657. [Google Scholar] [CrossRef]
- Yerli-Soylu, N.; Akturk, A.; Kabak, Ö.; Erol-Taygun, M.; Karbancioglu-Guler, F.; Küçükbayrak, S. TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli. Eng. Sci. Technol. Int J. 2022, 35, 101175. [Google Scholar] [CrossRef]
- Cronemeyer, D.C. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev. 1959, 113, 1222. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnan, V. Vacancy Engineering in Semiconductor Photocatalysts: Implications in Hydrogen Evolution and Nitrogen Fixation Applications. Adv. Funct. Mater. 2021, 31, 2009807. [Google Scholar] [CrossRef]
- de Groot, F.; Kotani, A. Core Level Spectroscopy of Solids; CRC Press: Boca Raton, FL, USA, 2008; p. 147. [Google Scholar]
- Zhang, A.T.; Zheng, W.; Yuan, Z.; Tian, J.M.; Yue, L.J.; Zheng, R.K.; Wei, D.; Liu, J.Q. Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors. Chem. Eng. J. 2020, 380, 122486. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, X.X.; Han, J.; Hu, K.; Chen, J.S. Self-Supported Sheets-on-Wire CuO@Ni(OH)2/Zn(OH)2 Nanoarrays for High-Performance Flexible Quasi-Solid-State Supercapacitor. Processes 2021, 9, 680. [Google Scholar] [CrossRef]
- Chen, F.; Chen, C.; Hu, Q.; Xiang, B.; Song, T.T.; Zou, X.F.; Li, W.N.; Xiong, B.X.; Deng, M.S. Synthesis of CuO@CoNi LDH on Cu foam for high-performance supercapacitors. Chem. Eng. J. 2020, 401, 126145. [Google Scholar] [CrossRef]
- Nabila, M.I.; Kannabiran, K. Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 2018, 15, 56–62. [Google Scholar] [CrossRef]
- Fardood, S.T.; Moradnia, F.; Heidarzadeh, S.; Naghipour, A. Green synthesis, characterization, photocatalytic and antibacterial activities of copper oxide nanoparticles. Nanochem. Res. 2023, 8, 134–140. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kim, S.; Park, S.-H.; Park, H.; Huh, Y.-D. Morphology-dependent antibacterial activities of Cu2O. Mater. Lett. 2011, 65, 818–820. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Kuang, J.; Xing, Z.; Yin, J.; Li, Z.; Tan, S.; Li, M.; Jiang, J.; Zhu, Q.; Zhou, W. Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arab. J. Chem. 2020, 13, 2568–2578. [Google Scholar] [CrossRef]
- Bagus, P.S.; Sousa, C.; Illas, F. XPS binding energy shifts as a function of bond distances: A case study of CO. J. Phys. Condens. Matter 2022, 34, 154004. [Google Scholar] [CrossRef]
- Peng, Y.; Li, P.; Li, H.; Xin, L.; Ding, J.; Yin, X.; Yu, S. Theoretical and experimental study of spontaneous adsorption-induced superhydrophobic Cu coating with hierarchical structures and its anti-scaling property. Surf. Coat. Technol. 2022, 441, 128557. [Google Scholar] [CrossRef]
- Berger-Keller, N.; Bertrand, G.; Filiatre, C.; Meunier, C.; Coddet, C. Microstructure of Plasma-Sprayed Titania Coatings Deposited from Spray Dried Powder. Surf. Coat. Technol. 2003, 168, 281–290. [Google Scholar] [CrossRef]
- Gao, R.Q.; Huang, Y.R.; Liu, D.; Li, G.T. Effect of Heat Treatment Process on the Structure and Properties of Nano-TiO2. Nat. Environ. Pollut. 2021, 20, 405–410. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Taraszkiewicz, A.; Fila, G.; Grinholc, M.; Nakonieczna, J. Innovative Strategies to Overcome Biofilm Resistance. BioMed Res. Int. 2013, 2013, 150653. [Google Scholar] [CrossRef]
- Verderosa, A.D.; Dhouib, R.; Fairfull-Smith, K.E.; Totsika, M. Nitroxide Functionalized Antibiotics Are Promising Eradication Agents against Staphylococcus aureus Biofilms. Antimicrob. Agents Chemother. 2019, 64, e01685-19. [Google Scholar] [CrossRef]
- Nan, L.; Xu, D.; Gu, T.; Song, X.; Yang, K. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Mater. Sci. Eng. C 2015, 48, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Zuily, L.; Lahrach, N.; Fassler, R.; Genest, O.; Faller, P.; Sénèque, O.; Denis, Y.; Castanié-Cornet, M.-P.; Genevaux, P.; Jakob, U.; et al. Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. mBio 2022, 13, e03251-21. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.N.; Xing, G.; Miller, C.J.; Waite, T.D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54–64. [Google Scholar] [CrossRef]
- Yadav, H.M.; Kim, J.-S.; Pawar, S.H. Developments in photocatalytic antibacterial activity of nano-TiO2: A review. Korean J. Chem. Eng. 2016, 33, 1989–1998. [Google Scholar] [CrossRef]
Parameter | Conditions |
---|---|
Arc current | 250 A (Cu), 400 A (TiO2), 450 A (Cu-TiO2) |
Net power | 20.1 kW (Cu), 19.8 kW (TiO2), 21.6 kW (Cu-TiO2) |
Stand-Off-Distance | 140 mm (Cu), 110 mm (TiO2 and Cu-TiO2) |
Feedstock feedrate | 30 g·min−1 (Cu), 16 mL·min−1 TiO2 |
Ar/H2 flowrate | 85/5 (Cu) LPM, 40/3 LPM (TiO2 and Cu-TiO2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, L.; Prorot, A.; Gnodé, L.; Verdieu, P.T.; Vardelle, A.; Rat, V.; Denoirjean, A. Coupling APS/SPS Techniques for Cu-TiO2 Antibacterial Coating Deposition: Application to Water Treatment. Coatings 2024, 14, 1426. https://doi.org/10.3390/coatings14111426
Youssef L, Prorot A, Gnodé L, Verdieu PT, Vardelle A, Rat V, Denoirjean A. Coupling APS/SPS Techniques for Cu-TiO2 Antibacterial Coating Deposition: Application to Water Treatment. Coatings. 2024; 14(11):1426. https://doi.org/10.3390/coatings14111426
Chicago/Turabian StyleYoussef, Laurène, Audrey Prorot, Laurène Gnodé, Pierre Th’Madiou Verdieu, Armelle Vardelle, Vincent Rat, and Alain Denoirjean. 2024. "Coupling APS/SPS Techniques for Cu-TiO2 Antibacterial Coating Deposition: Application to Water Treatment" Coatings 14, no. 11: 1426. https://doi.org/10.3390/coatings14111426
APA StyleYoussef, L., Prorot, A., Gnodé, L., Verdieu, P. T., Vardelle, A., Rat, V., & Denoirjean, A. (2024). Coupling APS/SPS Techniques for Cu-TiO2 Antibacterial Coating Deposition: Application to Water Treatment. Coatings, 14(11), 1426. https://doi.org/10.3390/coatings14111426