The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cross-Sectional Analysis
3.2. Surface Topography Analysis
3.3. CF4/CHF3 Plasma Etching Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coburn, J.W.; Winters, H.F. Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 1979, 16, 391–403. [Google Scholar] [CrossRef]
- Donnelly, V.M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013, 31, 050825. [Google Scholar] [CrossRef]
- Kasashima, Y.; Nabeoka, N.; Motomura, T.; Uesugi, F. Many flaked particles caused by impulsive force of electric field stress and effect of electrostriction stress in mass-production plasma etching equipment. Jpn. J. Appl. Phys. 2014, 53, 040301. [Google Scholar] [CrossRef]
- Ishimaru, H. Ultimate pressure of the order of 10–13 Torr in an aluminum alloy vacuum chamber. J. Vac. Sci. Technol. A 1989, 7, 2439–2442. [Google Scholar] [CrossRef]
- Tezani, L.; Pessoa, R.; Maciel, H.; Petraconi, G. Chemistry studies of SF6/CF4, SF6/O2 and CF4/O2 gas phase during hollow cathode reactive ion etching plasma. Vacuum 2014, 106, 64–68. [Google Scholar] [CrossRef]
- Song, J.-B.; Choi, E.; Oh, S.-G.; So, J.; Lee, S.-S.; Kim, J.-T.; Yun, J.-Y. Improved reliability of breakdown voltage measurement of yttrium oxide coatings by plasma spray. Ceram. Int. 2019, 45, 22169–22174. [Google Scholar] [CrossRef]
- Guo, M.; Yang, L.; Li, P.Y.; Xu, Z.T.; Xu, C.Y.; Wang, Q.D.; Li, Y. Tribological Behavior Regulation of Graphene Nanocrystallites Embedded Carbon Film by Fluorine Plasma Etching. J. Mech. Eng. 2024, 60, 216–226. [Google Scholar]
- Fukumoto, H.; Fujikake, I.; Takao, Y.; Eriguchi, K.; Ono, K. Plasma chemical behaviour of reactants and reaction products during inductively coupled CF4plasma etching of SiO2. Plasma Sources Sci. Technol. 2009, 18, 045027. [Google Scholar] [CrossRef]
- Kim, D.-P.; Yeo, J.-W.; Kim, C.-I. Etching properties of Al2O3 films in inductively coupled plasma. Thin Solid Films 2004, 459, 122–126. [Google Scholar] [CrossRef]
- Cao, Y.-C.; Zhao, L.; Luo, J.; Wang, K.; Zhang, B.-P.; Yokota, H.; Ito, Y.; Li, J.-F. Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3. Appl. Surf. Sci. 2016, 366, 304–309. [Google Scholar] [CrossRef]
- Kreethi, R.; Hwang, Y.-J.; Lee, H.-Y.; Park, J.-H.; Lee, K.-A. Stability and plasma etching behavior of yttrium-based coatings by air plasma spray process. Surf. Coat. Technol. 2023, 454, 129182. [Google Scholar] [CrossRef]
- Lin, T.K.; Wang, W.K.; Huang, S.Y.; Tasi, C.T.; Wuu, D.S. Comparison of erosion behavior and particle contamination in mass-production CF4/O2 plasma chambers using Y2O3 and YF3 protective coatings. Nanomaterials 2017, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Song, J.B.; Kim, J.T.; Oh, S.G.; Yun, J.Y. Contamination Particles and Plasma Etching Behavior of Atmospheric Plasma Sprayed Y2O3 and YF3 Coatings under NF3 Plasma. Coatings 2019, 9, 102. [Google Scholar] [CrossRef]
- Song, J.B.; Choi, E.; Oh, S.G.; Kim, J.T.; Yun, J.Y. Contamination Particle Behavior of Aerosol Deposited Y2O3 and YF3 Coatings under NF3 Plasma. Coatings 2019, 9, 310. [Google Scholar] [CrossRef]
- Ma, T.; List, T.; Donnelly, V.M. Comparisons of NF3 plasma-cleaned Y2O3, YOF, and YF3 chamber coatings during silicon etching in Cl2 plasmas. J. Vac. Sci. Technol. A 2018, 36, 031305. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Y.; Wu, S.; Chen, P.; Zhu, Z.; Tian, Z. Sputtering resistance and damage mechanism of Y2O3-based ceramics etching by Xe plasma. Mater. Today Commun. 2021, 26, 101775. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Kim, K.W.; Lee, H.Y.; Kwon, S.C.; Lee, K.A. Effect of Spray Angle the on Microstructure and Mechanical Prop-erties of Y2O3 Coating Layer Manufactured by Atmospheric Plasma Spray Process. J Korean Powder Met. Inst. 2021, 28, 310–316. [Google Scholar] [CrossRef]
- Kassner, H.; Siegert, R.; Hathiramani, D.; Vassen, R.; Stoever, D. Application of suspension plasma spraying (SPS) for manu-facture of ceramic coatings. J. Therm. Spray Technol. 2008, 17, 115–123. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.H.; Hwang, N.M. Yttrium Oxyfluoride Coating Deposited with a Y5O4F7/YF3 Suspension by Suspension Plasma Spraying Under Atmospheric Pressure. J. Therm. Spray Technol. 2022, 31, 1508–1520. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, E.; Lee, D.G.; Seo, J.P.; Back, T.S.; So, J.H. The effect of powder particle size on the corrosion behavior of at-mospheric plasma spray-Y2O3 coating: Unraveling the corrosion mechanism by fluorine-based plasma. Appl. Surf. Sci. 2022, 606, 154958. [Google Scholar] [CrossRef]
- Dubourg, L.; Lima, R.; Moreau, C. Properties of alumina–titania coatings prepared by laser-assisted air plasma spraying. Surf. Coat. Technol. 2007, 201, 6278–6284. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, L.F.; Zheng, H.Z.; Wang, D.S. Surface modification of plasma spraying Al2O3-13 wt% TiO2 coating by laser remelting technique. Mater. Res. Express 2022, 9, 056401. [Google Scholar] [CrossRef]
- Kai, C.; Yong, Z.; Dongting, W.; Yingwen, T.; Yongang, Z. Pulsed laser remelting supersonic plasma sprayed Cr3C2-NiCr coatings for regulating microstructure hardness and corrosion properties. Surf. Coat. Technol. 2021, 418, 127258. [Google Scholar]
- Janka, L.; Norpoth, J.; Eicher, S.; Ripoll, M.R.; Vuoristo, P. Improving the toughness of thermally sprayed Cr3C2-NiCr hardmetal coatings by laser post-treatment. Mater. Des. 2016, 98, 135–142. [Google Scholar] [CrossRef]
- Zhang, P.P.; Jiang, S.Y.; Guo, Y.J.; Sui, Y.F.; Ding, X.Y.; Yao, Z.H. Microstructures and Wear Resistance of Mo Coating Fabri-cated by In Situ Laser-Assisted Plasma Spraying. J. Therm. Spray Technol. 2023, 33, 233–245. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, Y.F.; Li, Q.; Ran, X.; Hao, Q.; Guo, X.L. Influence of atmospheric plasma spraying process parameters on microstructure and properties of yttrium oxide coatings. Dig. J. Nanomater. Biostr. 2024, 19, 1–13. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Dong, X.Y.; Luo, X.T.; Mahrukh, M.; Li, C.J. Mechanism of Suppressing Oxidation of FeAl Molten Droplet by Adding C to Powder and Its Effect on Microstructure and Properties of Plasma-sprayed Coating. China Surf. Eng. 2023, 36, 44–56. [Google Scholar]
- Gadow, R.; Killinger, A.; Stiegler, N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf. Coat. Technol. 2010, 205, 1157–1164. [Google Scholar] [CrossRef]
- Tillmann, W.; Khalil, O.; Abdulgader, M. Porosity Characterization and Its Effect on Thermal Properties of APS-Sprayed Alumina Coatings. Coatings 2019, 9, 601. [Google Scholar] [CrossRef]
- Vickerman, J.C.; Gilmore, I.S. Surface Analysis, 2nd ed.; Wiley: New York, NY, USA, 2009; p. 53. [Google Scholar]
- Kim, B.H.; Kwon, S.K. Oxide via etching in a magnetically enhanced CHF3/CF4/Ar plasma. Solid-State Electron. 2003, 47, 1799–1803. [Google Scholar] [CrossRef]
- Moritz, K.; Moritz, L.; Weber, M.S.; Rahel, B.; Egbert, W.; Martin, B. The role of fluorination during the physicochemical erosion of yttria in fluorine- based etching plasmas. J. Eur. Ceram. Soc. 2022, 42, 561–566. [Google Scholar]
- Kirchhof, J.; Unger, S.; Klein, K.F.; Knappe, B. Diffusion behaviour of fluorine in silica glass. J. Non-Cryst. Solids 1995, 181, 266–273. [Google Scholar] [CrossRef]
No. | Current (A) | Voltage (V) | Primary Gas, Ar (SLPM) | Primary Gas, H2 (SLPM) | Spray Distance (mm) | Powder Feed Rate (g/min) | Gun Speed (mm/min) | Overlap Distance (mm) | Laser Power (W) |
---|---|---|---|---|---|---|---|---|---|
1 | 700 | 58 | 45 | 3 | 100 | 15 | 100 | 4 | 0 |
2 | 700 | 58 | 45 | 3 | 100 | 15 | 100 | 4 | 500 |
3 | 700 | 58 | 45 | 3 | 100 | 15 | 100 | 4 | 600 |
APS | LAPS+500W | LAPS+600W | |
---|---|---|---|
Laser power (W) | 0 | 500 | 600 |
Porosity Roughness (μm) | 7.84% 12.941 | 3.74% 9.61 | 4.95% 9.671 |
APS | LAPS+500W | LAPS+600W | |
---|---|---|---|
Before (μm) | 474.494 | 425.914 | 452.874 |
After (μm) Decrease ratio | 448.485 5.48% | 415.463 2.45% | 414.96 8.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Xie, T.; Zhang, P.; Yao, Z.; Zhang, Q.; Deng, J.; Sui, Y.; Yao, J. The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating. Coatings 2024, 14, 1427. https://doi.org/10.3390/coatings14111427
Zhao X, Xie T, Zhang P, Yao Z, Zhang Q, Deng J, Sui Y, Yao J. The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating. Coatings. 2024; 14(11):1427. https://doi.org/10.3390/coatings14111427
Chicago/Turabian StyleZhao, Xutao, Tian Xie, Panpan Zhang, Zhehe Yao, Qunli Zhang, Jiake Deng, Yongfeng Sui, and Jianhua Yao. 2024. "The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating" Coatings 14, no. 11: 1427. https://doi.org/10.3390/coatings14111427
APA StyleZhao, X., Xie, T., Zhang, P., Yao, Z., Zhang, Q., Deng, J., Sui, Y., & Yao, J. (2024). The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating. Coatings, 14(11), 1427. https://doi.org/10.3390/coatings14111427