Development and Performance of ZnO/MoS2 Gas Sensors for NO2 Monitoring and Protection in Library Environments
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of ZnO/MoS2 Nanocomposites
2.2. Characterization of ZnO/MoS2
2.3. Fabrication and Testing of ZnO/MoS2 Sensors
2.4. Construction of the Gas-Sensitive Testing System
3. Results and Discussion
3.1. Surface Morphology of ZnO/MoS2
3.2. XRD Analysis of ZnO/MoS2
3.3. Elemental Composition of ZnO/MoS2
3.4. TEM Morphology of ZnO/MoS2
3.5. Gas-Sensing Characteristics of ZnO/MoS2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, Y.; Wei, L.; Zhang, Q.; Deng, Z.; Liao, X.; Zhou, Y.; Wang, L.; Li, T.; Liu, J.; Xiao, W.; et al. A broad-spectrum gas sensor based on correlated two-dimensional electron gas. Nat. Commun. 2023, 14, 8496. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.H.; Kim, I.Y.; Park, J.Y.; Choa, Y.H.; Lim, J.H. Anodic Aluminum Oxide-Based Chemi-Capacitive Sensor for Ethanol Gas. Nanomaterials 2023, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gong, Z.X.; Huo, L.Z.; Guo, C.F.; Yang, X.J.; Wang, Y.X.; Luo, X.P. Zinc Oxide-Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia. Nanomaterials 2023, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, W.; Meng, F. Low Detection Limit and High Sensitivity 2-Butanone Gas Sensor Based on ZnO Nanosheets Decorated by Co Nanoparticles Derived from ZIF-67. Nanomaterials 2023, 13, 2398. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Chen, X.; Liu, T.; Ouyang, Y.; Huang, S.; Zhang, Z.; Liu, F.; Qiu, L.; Wang, C.; Lin, X.; Chen, J.; et al. Influence of Different Pt Functionalization Modes on the Properties of CuO Gas-Sensing Materials. Sensors 2023, 24, 120. [Google Scholar] [CrossRef]
- Choi, S.W.; Katoch, A.; Kim, J.H.; Kim, S.S. Remarkable improvement of gas-sensing abilities in p-type oxide nanowires by local modification of the hole-accumulation layer. ACS Appl. Mater. Interfaces 2015, 7, 647–652. [Google Scholar] [CrossRef]
- Kida, T.; Seo, M.-H.; Suematsu, K.; Yuasa, M.; Kanmura, Y.; Shimanoe, K. A Micro Gas Sensor Using TiO2 Nanotubes to Detect Volatile Organic Compounds. Appl. Phys. Express 2013, 6, 047201. [Google Scholar] [CrossRef]
- Krishna, K.G.; Umadevi, G.; Parne, S.; Pothukanuri, N. Zinc oxide based gas sensors and their derivatives: A critical review. J. Mater. Chem. C 2023, 11, 3906–3925. [Google Scholar] [CrossRef]
- Huh, J.; Park, J.; Kim, G.T.; Park, J.Y. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth. Nanotechnology 2011, 22, 085502. [Google Scholar] [CrossRef]
- Chao, J.; Yu, H.; Zhang, K.; Zhou, Y.; Meng, D.; Sun, Y. Integration of ZnO and Au/ZnO Nanostructures into Gas Sensor Devices for Sensitive Ethanolamine Detection. ACS Appl. Nano Mater. 2023, 6, 5994–6001. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design and Application. Sensors 2020, 2020, 6694. [Google Scholar] [CrossRef] [PubMed]
- Nurfani, E.; Kadja, G.T.; Purbayanto, M.A.; Darma, Y. The role of substrate temperature on defects, electronic transitions, and dark current behavior of ZnO films fabricated by spray technique. Mater. Chem. Phys. 2019, 239, 122065. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829. [Google Scholar] [CrossRef]
- Wang, Z.L.; Kong, X.Y.; Ding, Y.; Gao, P.; Hughes, W.L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956. [Google Scholar] [CrossRef]
- Peng, L.; Zhao, Q.; Wang, D.; Zhai, J.; Wang, P.; Pang, S.; Xie, T. Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens. Actuators B Chem. 2009, 136, 80–85. [Google Scholar] [CrossRef]
- Min, X.; Hu, X.; Quan, W.; Wang, X.; Zhang, W. ltra-highly sensitive detection of ppb-level acetone gas using novel multicore-shell porous zinc oxide microspheres. Ceram. Int. 2021, 47, 13745–13755. [Google Scholar] [CrossRef]
- Shihabudeen, P.; Notash, M.Y.; Sardroodi, J.J.; Chaudhuri, A.R. Nitrogen incorporated zinc oxide thin film for efficient ethanol detection. Sens. Actuators B Chem. 2022, 358, 131544. [Google Scholar] [CrossRef]
- Xu, K.; Liu, K.; Liao, H.; Dosta, S.; Zhang, C. Suspension Plasma Sprayed ZnO Coatings for CO2 Gas Detection. J. Therm. Spray Technol. 2023, 32, 72–81. [Google Scholar] [CrossRef]
- Tseng, S.F.; Chen, P.S.; Hsu, S.H.; Hsiao, W.T.; Peng, W.J. Investigation of fiber laser-induced porous graphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gas sensors. Appl. Surf. Sci. 2023, 620, 156847. [Google Scholar] [CrossRef]
- Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Mazitova, G.T.; Kienskaya, K.I.; Ivanova, D.A.; Belova, I.A.; Butorova, I.A.; Sardushkin, M.V. Synthesis and properties of zinc oxide nanoparticles: Advances and prospects. Rev. J. Chem. 2019, 9, 127–152. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.-S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.-H.; Alpeggiani, F.; Sciacca, B.; Garnett, E.C.; Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 2018, 359, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Cai, S.; Paudel, T.R.; Sun, H.; Zhang, C.; Han, L.; Wei, Y.; Zang, Y.; Gu, M.; Zhang, Y.; et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M.W.; Park, J.; Gruner, S.M.; et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 2018, 559, 343–349. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Li, J.; Song, Z.; Zhang, H.; Zeng, W. Low Working Temperature of ZnO-MoS2 Nanocomposites for Delaying Aging with Good Acetylene Gas-Sensing Properties. Nanomaterials 2020, 10, 1902. [Google Scholar] [CrossRef]
- Jena, D.; Konar, A. Enhancement of Carrier Mobility in Semiconductor Nanostructures by Dielectric Engineering. Phys. Rev. Lett. 2007, 98, 136805. [Google Scholar] [CrossRef]
- Wang, J.; Ke, L.; Wu, J.; Liang, F.; Xiang, Y. Research and Development of Online Monitoring Protection Sensors for Paper Books Based on TiO2 NT/MoS2. Coatings 2024, 14, 552. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, F.; Yuan, H.; Xu, M.; Zhang, Q.P.; Song, M.; Li, J.H.; Bai, M.H. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency. Acta Mater. Compos. Sin. 2023, 40, 3428–3440. [Google Scholar]
- Yan, H.; Song, P.; Zhang, S.; Yang, Z.; Wang, Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 2016, 662, 118–125. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, H.; Sun, Y.; Li, J.; Ma, C.; Li, H.; Pan, Z.M.; Zhang, Q.P.; Yu, F.; Song, M.; et al. Investigation on photocatalysis and room temperature gas sensing of MoS2-ZnO nanocomposite synthesized by hydrothermal method. Acta Mater. Compos. Sin. 2022, 39, 2226–2237. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, Y.; Tian, C.; Yu, Y.; Zou, C. Development and Performance of ZnO/MoS2 Gas Sensors for NO2 Monitoring and Protection in Library Environments. Coatings 2024, 14, 1438. https://doi.org/10.3390/coatings14111438
Wang J, Xu Y, Tian C, Yu Y, Zou C. Development and Performance of ZnO/MoS2 Gas Sensors for NO2 Monitoring and Protection in Library Environments. Coatings. 2024; 14(11):1438. https://doi.org/10.3390/coatings14111438
Chicago/Turabian StyleWang, Jia, Yuting Xu, Canxin Tian, Yunjiang Yu, and Changwei Zou. 2024. "Development and Performance of ZnO/MoS2 Gas Sensors for NO2 Monitoring and Protection in Library Environments" Coatings 14, no. 11: 1438. https://doi.org/10.3390/coatings14111438
APA StyleWang, J., Xu, Y., Tian, C., Yu, Y., & Zou, C. (2024). Development and Performance of ZnO/MoS2 Gas Sensors for NO2 Monitoring and Protection in Library Environments. Coatings, 14(11), 1438. https://doi.org/10.3390/coatings14111438