Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries
Abstract
:1. Introduction
2. Sample Preparation
3. Experimental Arrangements
4. Theory
4.1. Structural Model
- The roughness of both boundaries of the films is generated by a stationary stochastic Gaussian process. This roughness is homogeneous and isotropic.
- The roughness of both boundaries has wide intervals regarding the spatial frequencies, i.e., it exhibits low, moderate and high spatial frequencies.
- The roughness corresponding to the low spatial frequencies is identical for both boundaries.
- The roughness of both boundaries corresponding to moderate and high spatial frequencies is statistically correlated. The rms values of the heights are different in the upper and lower boundaries.
- The slopes of the roughness of both boundaries corresponding to the low spatial frequencies are very small and therefore their influence on the optical quantities can be neglected.
- The transition layers occur between the substrates and thin films, i.e., they occur at the lower boundaries of the films.
- The transition layers are formed by identical thin films (ITF) in which the roughness of both boundaries is identical. The roughness of both boundaries of the transition layers is the same as the roughness of the lower boundaries of the thin films, i.e., as the roughness of the silicon surfaces.
- The thin films, transition layers and substrates consist of isotropic and homogeneous materials from the optical point of view.
4.2. Dispersion Model
4.3. Scalar Diffraction Theory
4.3.1. Coherent Reflectance Corresponding to SDT
4.3.2. Incoherent Reflectance Corresponding to SDT
4.3.3. Rayleigh–Rice Theory
4.3.4. Combination of Scalar Diffraction Theory and Rayleigh–Rice Theory
4.3.5. Coherent and Incoherent Reflectance for Shorter Wavelengths
5. Data Processing
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Incoherent Reflectance Ri
References
- Korkmaz, Ş.; Pat, S.; Ekem, N.; Balbağ, M.Z.; Temel, S. Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermionic vacuum arc. Vacuum 2012, 86, 1930–1933. [Google Scholar] [CrossRef]
- Pei, L.; Jiaqi, Z.; Yuankun, Z.; Jiecai, H. Preparation and optical properties of sputtered-deposition yttrium fluoride film. Nucl. Instrum. Methods Phys. Res. B 2013, 307, 429–433. [Google Scholar] [CrossRef]
- Babeva, T.; Kitova, S.; Konstantinov, I. Photometric methods for determining the optical constants and the thicknesses of thin absorbing films: Criteria for precise and unambiguous determination of n, k, and d in a wide spectral range. Appl. Opt. 2001, 40, 2682–2686. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mamedov, A.M. Optical function of LiNbO3 and Nb2O5 transparent thin films. Ferroelectrics 2004, 304, 131–133. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Elshazly-Zaghloul, M.; Bashara, N.M. Combined reflection and transmission thin-film ellipsometry: A unified linear analysis. Appl. Opt. 1975, 14, 1652–1663. [Google Scholar] [CrossRef]
- Park, J.; Cho, Y.J.; Chegal, W.; Lee, J.; Jang, Y.S.; Jin, J. A Review of Thin-film Thickness Measurements using Optical Methods. Int. J. Precis. Eng. Manuf. 2024, 25, 1725–1737. [Google Scholar] [CrossRef]
- Bader, G.; Ashrit, P.; Truong, V.V. Transmission and reflection ellipsometry of thin films and multilayer systems. Appl. Opt. 1998, 37, 1146–1151. [Google Scholar] [CrossRef]
- Lohner, T.; Kumar, K.J.; Petrik, P.; Subrahmanyam, A.; Bársony, I. Optical analysis of room temperature magnetron sputtered ITO films by reflectometry and spectroscopic ellipsometry. J. Mater. Res. 2014, 29, 1528–1536. [Google Scholar] [CrossRef]
- Franta, D.; Ohlídal, I.; Frumar, M.; Jedelský, J. Optical Characterization of Chalcogenide Thin Films. Appl. Surf. Sci. 2001, 175–176, 555–561. [Google Scholar] [CrossRef]
- Sheldon, B.; Haggerty, J.S.; Emslie, A.G. Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem. J. Opt. Soc. Am. 1982, 72, 1049–1055. [Google Scholar] [CrossRef]
- Jacobsson, R. Light Reflection from Films of Continuously Varying Refractive Index. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 1966; Volume 5, pp. 247–286. [Google Scholar]
- Kildemo, M. Real-Time Monitoring and Growth Control of Si-Gradient-Index Structures by Multiwavelength Ellipsometry. Appl. Opt. 1998, 37, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Kildemo, M.; Brenot, R.; Drévillon, B. Spectroellipsometric method for process monitoring semiconductor thin films and interfaces. Appl. Opt. 1998, 37, 5145–5149. [Google Scholar] [CrossRef] [PubMed]
- Carniglia, C.K. Ellipsometric calculations for nonabsorbing thin films with linear refractive-index gradients. J. Opt. Soc. Am. A 1990, 7, 848–856. [Google Scholar] [CrossRef]
- Horprathum, M.; Eiamchai, P.; Chindaudom, P.; Nuntawong, N.; Patthanasettakul, V.; Limnonthakul, P.; Limsuwan, P. Characterization of inhomogeneity in TiO2 thin films prepared by pulsed dc reactive magnetron sputtering. Thin Solid Films 2011, 520, 272–279. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, A.; Escobar-Alarcón, L.; Serna, R.; Cabello, F.; Haro-Poniatowski, E.; García-Valenzuela, A.; Alonso, J. Modeling of the refractive index and composition of luminescent nanometric chlorinated-silicon nitride films with embedded Si-quantum dots. J. Appl. Phys. 2016, 120, 145305. [Google Scholar] [CrossRef]
- Ohlídal, I.; Vohánka, J.; Mistrík, J.; Čermák, M.; Vižďa, F.; Franta, D. Approximations of reflection and transmission coefficients of inhomogeneous thin films based on multiple-beam interference model. Thin Solid Films 2019, 692, 137189. [Google Scholar] [CrossRef]
- Ohlídal, I.; Navrátil, K.; Lukeš, F. Reflection of Light by a System of Nonabsorbing Isotropic Film–Nonabsorbing Isotropic Substrate with Randomly Rough Boundaries. J. Opt. Soc. Am. 1971, 61, 1630–1639. [Google Scholar] [CrossRef]
- Nagata, K.; Nishiwaki, J. Reflection of Light from Filmed Rough Surface: Determination of Film Thickness and rms Roughness. Jpn. J. Appl. Phys. 1967, 6, 251–257. [Google Scholar] [CrossRef]
- Bauer, J.; Biste, L.; Bolze, D. Optical properties of aluminium nitride prepared by chemical and plasmachemical vapour deposition. Phys. Status Solidi A 1977, 39, 173–181. [Google Scholar] [CrossRef]
- Bauer, J. Optical properties, band gap, and surface roughness of Si3N4. Phys. Status Solidi A 1977, 39, 411–418. [Google Scholar] [CrossRef]
- Carniglia, C.K. Scalar scattering theory for multilayer optical coatings. Opt. Eng. 1979, 18, 104–115. [Google Scholar] [CrossRef]
- Zavislan, J.M. Angular scattering from optical interference coatings: Scalar scattering predictions and measurements. Appl. Opt. 1991, 30, 2224–2244. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.M. Scattering by all-dielectric multilayer bandpass filters and mirrors for lasers. In Physics of Thin Films; Hass, G., Francombe, M.H., Eds.; Academic Press: New York, NY, USA, 1978; Volume 10, pp. 167–226. [Google Scholar]
- Gliech, S.; Steinert, J.; Duparré, A. Light-scattering measurements of optical thin-film components at 157 and 193 nm. Appl. Opt. 2002, 41, 3224–3235. [Google Scholar] [CrossRef] [PubMed]
- Duparré, A.; Walther, H.G. Surface smoothing and roughening by dielectric thin film deposition. Appl. Opt. 1988, 27, 1393–1395. [Google Scholar] [CrossRef]
- Schröder, S.; Duparré, A.; Coriand, L.; Tünnermann, A.; Penalver, D.H.; Harvey, J.E. Modeling of light scattering in different regimes of surface roughness. Opt. Express 2011, 19, 9820–9835. [Google Scholar] [CrossRef]
- Schröder, S.; Herffurth, T.; Blaschke, H.; Duparré, A. Angle-resolved scattering: An effective method for characterizing thin-film coatings. Appl. Opt. 2011, 50, C164–C171. [Google Scholar] [CrossRef]
- Trost, M.; Schröder, S. Roughness and Scatter in Optical Coatings. In Optical Characterization of Thin Solid Films; Stenzel, O., Ohlídal, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 377–405. [Google Scholar]
- Schröder, S.; Duparré, A.; Tünnermann, A. Roughness evolution and scatter losses of multilayers for 193 nm optics. Appl. Opt. 2008, 47, C88–C97. [Google Scholar] [CrossRef]
- Franta, D.; Ohlídal, I.; Klapetek, P.; Ohlídal, M. Characterization of thin oxide films on GaAs substrates by optical methods and atomic force microscopy. Surf. Interface Anal. 2004, 36, 1203–1206. [Google Scholar] [CrossRef]
- Vohánka, J.; Ohlídal, I.; Buršíková, V.; Klapetek, P.; Kaur, N.J. Optical characterization of inhomogeneous thin films with randomly rough boundaries. Opt. Express 2022, 30, 2033–2047. [Google Scholar] [CrossRef]
- Ohlídal, I.; Vohánka, J.; Buršíková, V.; Dvořák, J.; Klapetek, P.; Kaur, N.J. Optical characterization of inhomogeneous thin films with randomly rough boundaries exhibiting wide intervals of spatial frequencies. Opt. Eng. 2022, 30, 39068–39085. [Google Scholar] [CrossRef]
- Vohánka, J.; Ohlídal, I.; Ohlídal, M.; Šustek, V.; Čermák, M.; Šulc, V.; Vašina, P.; Ženíšek, J.; Franta, D. Optical Characterization of Non-Stoichiometric Silicon Nitride Films Exhibiting Combined Defects. Coatings 2019, 9, 416. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Theeten, J.B.; Hottier, F. Investigation of Effective-medium Models of Microscopic Surface Roughness by Spectroscopic Ellipsometry. Phys. Rev. B 1979, 20, 3292–3302. [Google Scholar] [CrossRef]
- Henn, S.; Dornberg, G.; Müller, A.; Bundesmann, C.; Frost, F.; Sturm, C.; Grundmann, M. Optical and structural characterization of zinc oxide thin films upon ion beam assisted smoothing. Thin Solid Films 2024, 794, 140290. [Google Scholar] [CrossRef]
- Yao, C.; Shen, W.; Hu, X.; Hu, C. Evaluation of the surface and subsurface evolution of single-crystal yttrium aluminum garnet during polishing. Appl. Surf. Sci. 2023, 608, 155219. [Google Scholar] [CrossRef]
- Agarwal, S.; Giri, P.; Prajapati, Y.K.; Chakrabarti, P. Effect of surface roughness on the performance of optical SPR sensor for sucrose detection: Fabrication, characterization, and simulation study. IEEE Sens. J. 2016, 16, 8865–8873. [Google Scholar] [CrossRef]
- Agarwal, S.; Prajapati, Y.; Singh, V. Influence of metal roughness on SPR sensor performance. Opt. Commun. 2017, 383, 113–118. [Google Scholar] [CrossRef]
- Kanso, M.; Cuenot, S.; Louarn, G. Roughness effect on the SPR measurements for an optical fibre configuration: Experimental and numerical approaches. J. Opt. A Pure Appl. Opt. 2007, 9, 586. [Google Scholar] [CrossRef]
- Treebupachatsakul, T.; Shinnakerdchoke, S.; Pechprasarn, S. Sensing mechanisms of rough plasmonic surfaces for protein binding of surface plasmon resonance detection. Sensors 2023, 23, 3377. [Google Scholar] [CrossRef]
- Velinov, T.; Ahtapodov, L.; Nelson, A.; Gateshki, M.; Bivolarska, M. Influence of the surface roughness on the properties of Au films measured by surface plasmon resonance and X-ray reflectometry. Thin Solid Films 2011, 519, 2093–2097. [Google Scholar] [CrossRef]
- Schöche, S.; Hong, N.; Khorasaninejad, M.; Ambrosio, A.; Orabona, E.; Maddalena, P.; Capasso, F. Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Appl. Surf. Sci. 2017, 421, 778–782. [Google Scholar] [CrossRef]
- Mohandoss, M.; Nelleri, A. Optical properties of sunlight reduced graphene oxide using spectroscopic ellipsometry. Opt. Mater. 2018, 86, 126–132. [Google Scholar] [CrossRef]
- Gangwar, P.; Singh, S.; Khare, N. Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Appl. Phys. A 2018, 124, 620. [Google Scholar] [CrossRef]
- Pisarkiewicz, T.; Stapinski, T.; Czternastek, H.; Rava, P. Inhomogeneity of amorphous silicon thin films from optical transmission and reflection measurements. J. Non-Cryst. Solids 1991, 137, 619–622. [Google Scholar] [CrossRef]
- Pisarkiewicz, T. Reflection spectrum for a thin film with non-uniform thickness. J. Phys. D Appl. Phys. 1994, 27, 690. [Google Scholar] [CrossRef]
- Török, M.I. Determination of Optical Constants of Thin Films with Non-uniform Thickness from the Fringe Pattern of the Transmittance Spectra. Opt. Acta 1985, 32, 479–483. [Google Scholar] [CrossRef]
- Richter, U. Application of the degree of polarization to film thickness gradients. Thin Solid Films 1998, 313, 102–107. [Google Scholar] [CrossRef]
- Nečas, D.; Ohlídal, I.; Franta, D. The reflectance of non-uniform thin films. J. Opt. A Pure Appl. Opt. 2009, 11, 045202. [Google Scholar] [CrossRef]
- Ohlídal, M.; Ohlídal, I.; Klapetek, P.; Nečas, D.; Majumdar, A. Measurement of the thickness distribution and optical constants of non-uniform thin films. Meas. Sci. Technol. 2011, 22, 085104. [Google Scholar] [CrossRef]
- González-Leal, J.M.; Prieto-Alcón, R.; Vlček, M.; Márquez, E. Structural and optical characterization of amorphous As40S60 and As40Se60 films prepared by plasma-enhanced chemical vapor deposition. J. Non-Cryst. Solids 2004, 345–346, 88–92. [Google Scholar] [CrossRef]
- Manara, A.; Ostidich, A.; Pedroli, G.; Restelli, G. Anodic oxidation as sectioning technique for the analysis of impurity concentration profiles in silicon. Thin Solid Films 1971, 8, 359–375. [Google Scholar] [CrossRef]
- de Sousa Martinez de Freitas, A.; Maciel, C.C.; Rodrigues, J.S.; Ribeiro, R.P.; Delgado-Silva, A.O.; Rangel, E.C. Organosilicon films deposited in low-pressure plasma from hexamethyldisiloxane—A review. Vacuum 2021, 194, 110556. [Google Scholar] [CrossRef]
- Amri, R.; Hamed, Z.B.; Gamra, D.; Lejeune, M.; Bouchriha, H. Optical modeling and investigation of thin films based on plasma-polymerized HMDSO under oxygen flow deposited by PECVD. J. Mater. Sci. Mater. Electron. 2023, 34, 1413. [Google Scholar] [CrossRef]
- Ohlídal, I.; Vohánka, J.; Čermák, M.; Franta, D. Ellipsometry of Layered Systems. In Optical Characterization of Thin Solid Films; Stenzel, O., Ohlídal, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 233–267. [Google Scholar]
- Azzam, R. Mueller-matrix measurement using the four-detector photopolarimeter. Opt. Lett. 1986, 11, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Huard, S. Polarization of Light, 1st ed.; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Campi, D.; Coriasso, C. Prediction of Optical Properties of Amorphous Tetrahedrally Bounded Materials. J. Appl. Phys. 1988, 64, 4128–4134. [Google Scholar] [CrossRef]
- Lucarini, V.; Peiponen, K.E.; Saarinen, J.J.; Vartiainen, E.M. Kramers–Kronig Relations in Optical Materials Research; Springer: Berlin, Germany, 2005. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Pergamon: London, UK, 1963. [Google Scholar]
- Ogilvy, J.A. Theory of Wave Scattering from Random Rough Surfaces; A. Hilger: Philadelphia, PA, USA, 1991. [Google Scholar]
- Bass, F.G.; Fuks, I.M. Wave Scattering from Statistically Rough Surfaces; Pergamon: Oxford, UK, 1979. [Google Scholar]
- Voronovich, A.G. Wave Scattering from Rough Surfaces; Springer: Berlin, Germany, 1994. [Google Scholar]
- Harvey, J.; Krywonos, A.; Vernold, C.L. Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles. Opt. Eng. 2007, 46, 078002–1–078002–10. [Google Scholar] [CrossRef]
- Šustek, Š.; Vohánka, J.; Ohlídal, I.; Ohlídal, M.; Šulc, V.; Klapetek, P.; Kaur, N.J. Characterization of randomly rough surfaces using angle-resolved scattering of light and atomic force microscopy. J. Opt. 2021, 23, 105602. [Google Scholar] [CrossRef]
- Rice, S.O. Reflection of Electromagnetic Waves from Slightly Rough Surfaces. Commun. Pure Appl. Math. 1951, 4, 351–378. [Google Scholar] [CrossRef]
- Vohánka, J.; Čermák, M.; Franta, D.; Ohlídal, I. Efficient method to calculate the optical quantities of multi-layer systems with randomly rough boundaries using the Rayleigh–Rice theory. Phys. Scr. 2019, 94, 045502. [Google Scholar] [CrossRef]
- Ohlídal, I.; Franta, D.; Nečas, D. Improved combination of scalar diffraction theory and Rayleigh-Rice theory and its application to spectroscopic ellipsometry of randomly rough surfaces. Thin Solid Films 2014, 571, 695–700. [Google Scholar] [CrossRef]
- Franta, D.; Dubroka, A.; Wang, C.; Giglia, A.; Vohánka, J.; Franta, P.; Ohlídal, I. Temperature-dependent dispersion model of float zone crystalline silicon. Appl. Surf. Sci. 2017, 421, 405–419. [Google Scholar] [CrossRef]
- Azzam, R.M.A. Mueller-matrix ellipsometry: A review. In Proceedings of the Polarization: Measurement, Analysis, and Remote Sensing. Polariz. Meas. Anal. Remote Sens. 1997, 3121, 396–405. [Google Scholar]
- Levin, B.R. The Theory of Random Processes and Its Application in Radio Engineering; Liaison Office, Technical Information Center: Wright-Patterson Air Force Base, OH, USA, 1960. [Google Scholar]
Ellipsometry | Reflectance IR+VIS | Reflectance UV | |
---|---|---|---|
model | RRT (non-identical roughness of boundaries) | combination of RRT (non-identical roughness of boundaries) and SDT (identical roughness of boundaries) | SDT (non-identical roughness of boundaries) including contribution of incoherent reflectance |
modeled quantities | ellipsometric quantities , , | reflectance | reflectance |
relevant formulae | (20)–(22), (24) | (20)–(23), (25) | (4), (5), (13), (16), (26)–(28) |
roughness parameters | , , | , , , | , , |
Quantity | Value | |
---|---|---|
mean thickness of the film (ellipsometry) | [nm] | |
mean thickness of the film (reflectance) | [nm] | |
mean thickness of the transition layer | [nm] | |
rms value of the heights at the upper boundary (RRT) | [nm] | |
rms value of the heights at the lower boundary (RRT) | [nm] | |
autocorrelation length (RRT) | [nm] | |
rms value of the heights (SDT) | [nm] | |
total rms value of the heights at the upper boundary | [nm] | |
total rms value of the heights at the lower boundary | [nm] | |
product of acceptance half-angle and autocorr. length (SDT) |
Polymer-like | Transition Layer | ||||
---|---|---|---|---|---|
Quantity | Film | 1st Term | 2nd Term | 3rd Term | |
Transition strength | |||||
Band gap | [eV] | → | ← | ||
Peak position | [eV] | ||||
Peak width | B [eV] | 1 (fixed) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohlídal, I.; Vohánka, J.; Dvořák, J.; Buršíková, V.; Klapetek, P. Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries. Coatings 2024, 14, 1439. https://doi.org/10.3390/coatings14111439
Ohlídal I, Vohánka J, Dvořák J, Buršíková V, Klapetek P. Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries. Coatings. 2024; 14(11):1439. https://doi.org/10.3390/coatings14111439
Chicago/Turabian StyleOhlídal, Ivan, Jiří Vohánka, Jan Dvořák, Vilma Buršíková, and Petr Klapetek. 2024. "Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries" Coatings 14, no. 11: 1439. https://doi.org/10.3390/coatings14111439
APA StyleOhlídal, I., Vohánka, J., Dvořák, J., Buršíková, V., & Klapetek, P. (2024). Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries. Coatings, 14(11), 1439. https://doi.org/10.3390/coatings14111439