Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges
Abstract
:1. Introduction
2. Advantages of SLCL Systems Including DLC Coatings and Oils
2.1. Properties and Bottlenecks of DLC Coatings
2.2. Properties and Bottlenecks of Lubricating Oils
2.3. The Necessity of SLCL
3. Tribological Properties of SLCL Systems
3.1. Effects of Hydrogen Content in DLC
3.2. Effects of Doping in DLC Coatings
3.2.1. Hetero-Atom Doping
B Doping
N Doping
F Doping
Si Doping
Ti Doping
Cu Doping
W Doping
Co-Doping with Different Hetero-Atoms
3.2.2. Nanocrystalline Doping
3.3. Effects of DLC Functionalization
3.4. Effects of DLC Surface Morphology
3.5. Effects of Oil-Soluble Additives in Oils
3.5.1. ZDDP
3.5.2. MoDTC
Friction Reduction but Wear Acceleration Induced by MoDTC
Mechanisms of MoDTC-Accelerated Wear of DLC Coatings
Solutions to Inhibit the DLC Wear Induced by MoDTC
- 1.
- Using the additive package MoDTC+ZDDP instead of individual MoDTC
- 2.
- Using DLC/DLC tribo-pairs to replace steel/DLC tribo-pairs
3.5.3. Synergistic Effects Between MoDTC and ZDDP in Oils
3.5.4. Ionic Liquids (ILs)
3.5.5. Other Oil-Soluble Additives
3.6. Effects of Nanoparticle Additives in Oils
3.7. Effects of Counterpart Materials
4. Prospects
- (1)
- One of the bottlenecks that seriously constrained the wide applications of SLCL systems is the high costs for depositing DLC coatings [150]. Based on the widely accepted deposition technologies, a whole set of equipment and the consumables (like the targets) for preparing DLC coatings are very expensive. Based on the markets, the costs of DLC coatings are more than ten times higher than commercial lubricating oils. And the DLC coating accounts for more than 90% of the cost of an SLCL system. Reduced costs of DLC coatings are essential for the commercial and engineering applications of SLCL systems. Therefore, relatively low-cost but efficient techniques need to be developed for fabricating DLC coatings. And the prepared DLC should have satisfactory tribological properties and excellent compatibility with traditional engine oils.
- (2)
- Up to now, only some traditional particle additives have been used in the oils of the reported SLCL systems. Some new solid additives, such as black phosphorus [151], MXene [152], carbon nanosheets [153], and some ball-like nano-hybrids [154,155], have not been tried in SLCL systems. Their compatibility and/or synergy with DLC coatings need to be investigated to construct efficient SLCL systems.
- (3)
- The most widely used friction modifier in the oils of SLCL systems is sulfur-containing MoDTC. Some environmentally friendly sulfur- and phosphorus-free organic molybdenum (SPFMo) compounds have been synthesized and measured as new friction modifiers in lubricating oils in recent years [156,157]. However, there are few reports about SPFMo-containing SLCL systems.
- (4)
- Doping of DLC coatings has been studied intensively and widely, as doping with additional elements can offset some drawbacks of the un-doped DLC. However, investigation about SLCL systems involving doped DLC coatings has been rarely reported.
- (5)
- It is desired that an SLCL system can achieve superlubricity in practical engineering applications. Like DLC coatings and lubricating oils, optimized working conditions such as temperature, load, and velocity are essential for an SLCL system to realize superlubricity. In addition, the compatibility and synergy between the coating and the oil determine the tribological properties of SLCL systems. Consequently, the synergistic effects between coatings and oils need to be improved or optimized for the realization of the superlubricity of an SLCL system.
5. Conclusions
- (1)
- The DLC coatings often change their surfaces (such as graphitization) and/or participate in the tribo-chemical reactions during friction, both increasing the surface wear of the coatings.
- (2)
- In a steel/DLC pair, the widely used additive package of MoDTC+ZDDP in lubricants usually results in a lower COF and wear compared with the lubricant without this package, due to the synergies between the formed friction-reduction MoS2 and anti-wear tribo-films mainly derived from ZDDP [120]. However, for DLC self-mated pairs, this additive package usually led to an increased COF due to the generation of some abrasive particles.
- (3)
- In the past two decades, many studies have reported the superlubricity of DLC films without the help of lubricating oils [158]. However, superlubricity in SLCL systems was rarely observed.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Nylund, N.O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Yang, Z.; Qiu, F.; Feng, W.; Lu, Z.; Song, H.; Hu, X. Lubricity characteristics of edge and basal functionalized GO as PAO additives. J. Ind. Eng. Chem. 2024, 130, 556–571. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Zhao, Z.; Yue, Z.; Feng, P.; Ma, X.; Li, H.; Ye, X.; Zhu, M. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon 2022, 191, 84–97. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.; Amann, T.; Yuan, C.; Li, K. Macroscopic oil-based superlubricity achieved on steel surfaces with the roughness of engineering level. Tribol. Lett. 2023, 71, 32. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.; Chen, Z. Fretting tribological performance of DLC, TiAlN and DLC/TiAlN coatings deposited on carburized 18CrNi4A steel. Surf. Topogr. Metrol. Prop. 2022, 10, 015009. [Google Scholar] [CrossRef]
- McMaster, S.J.; Kosarieh, S.; Liskiewicz, T.W.; Neville, A.; Beake, B.D. Utilising H/E to predict fretting wear performance of DLC coating systems. Tribol. Int. 2023, 185, 108524. [Google Scholar] [CrossRef]
- Sheng, D.; Zhang, L.; Shang, H.; Guo, B.; Li, Y. The Surface of a PMP Hollow Fiber Membrane Was Modified with a Diamond-like Carbon Film to Enhance the Blood Compatibility of an Artificial Lung Membrane. Langmuir 2023, 39, 13258–13266. [Google Scholar] [CrossRef]
- Wongpanya, P.; Wongpinij, T.; Photongkam, P.; Siritapetawee, J. Improvement in corrosion resistance of 316 L stainless steel in simulated body fluid mixed with antiplatelet drugs by coating with Ti-doped DLC films for application in biomaterials. Corros. Sci. 2022, 208, 110611. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, X.; Zhang, C.; Zhang, C.; Deng, W.; Wang, Y.; Xu, J.; Qi, W. Ion energy-induced nanoclustering structure in a-C:H film for achieving robust superlubricity in vacuum. Friction 2022, 10, 1967–1984. [Google Scholar] [CrossRef]
- Zeng, Q.; Eryilmaz, O.; Erdemir, A. Superlubricity of the DLC films-related friction system at elevated temperature. RSC Adv. 2015, 5, 93147–93154. [Google Scholar] [CrossRef]
- Gong, Z.; Shi, J.; Ma, W.; Zhang, B.; Zhang, J. Engineering-scale superlubricity of the fingerprint-like carbon films based on high power pulsed plasma enhanced chemical vapor deposition. RSC Adv. 2016, 6, 115092–115100. [Google Scholar] [CrossRef]
- Tsigkis, V.; Bashandeh, K.; Lan, P.; Polycarpou, A.A. Tribological investigation of advanced coatings subjected to Venusian environment of 2.4 MPa CO2 pressure and 462 °C. Surf. Coat. Technol. 2022, 441, 128550. [Google Scholar] [CrossRef]
- Kim, S.G.; Cho, Y.K.; Jang, W.S.; Kim, S.W.; Nagahiro, S.; Takai, O. Effects of humidity on the friction coefficient of diamond-like carbon (DLC) coating. J. Korean Phys. Soc. 2009, 54, 1228–1236. [Google Scholar] [CrossRef]
- Gilmore, R.; Hauert, R. Comparative study of the tribological moisture sensitivity of Si-free and Si-containing diamond-like carbon films. Surf. Coat. Technol. 2000, 133–134, 437–442. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, S.; Arnell, R.D. The effect of relative humidity on wear of a diamond-like carbon coating. Surf. Coat. Technol. 2003, 167, 221–225. [Google Scholar] [CrossRef]
- Hashizume, N.; Murashima, M.; Umehara, N.; Tokoroyama, T.; Lee, W.Y. In situ observation of the formation of MoDTC-derived tribofilm on a ta-C coating using reflectance spectroscopy and its effects on friction. Tribol. Int. 2021, 162, 107128. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Peng, J.; Qiu, X.; Li, X.; Zhang, G. Effects of repeated cycling cryogenic treatment on the microstructure and mechanical properties of hydrogenated diamond-like coatings. Thin Solid Film. 2023, 775, 139865. [Google Scholar] [CrossRef]
- Kuwahara, T.; Long, Y.; Sayilan, A.; Reichenbach, T.; Martin, J.M.; Bouchet MD, B.; Moseler, M.; Moras, G. Superlubricity of silicon-based ceramics sliding against hydrogenated amorphous carbon in ultrahigh vacuum: Mechanisms of transfer film formation. ACS Appl. Mater. Interfaces 2024, 16, 8032–8044. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Z.; Chen, H.; Wang, H.; Liu, Y.; Wang, J.; Wang, M. Friction behavior of diamond-like carbon coatings with different sp3 contents by atomistic-scale friction dynamics. Surf. Coat. Technol. 2023, 464, 129580. [Google Scholar] [CrossRef]
- Samiee, M.; Seyedraoufi, Z.S.; Abbasi, M.; Eshraghi, M.J.; Abouei, V. Diamond-like carbon (DLC) coating on graphite: Investigating the achievement of maximum wear properties using the PECVD method. Ceram. Int. 2024, 50, 21439–21450. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Thiex, M.; Sperka, P.; Hartl, M.; Reitschuster, S.; Maier, E.; Lohner, T.; Stahl, K. DLC-coated thermoplastics: Tribological analyses under dry and lubricated sliding conditions. Tribol. Lett. 2023, 71, 2. [Google Scholar] [CrossRef]
- Ramirez-Reyna, O.; Rodriguez-Castro, G.A.; Perez-Alvarez, J.; Flores-Martinez, M.; Rodil, S.E. Evaluation of mechanical properties and tribological behavior of DLC/WC/WCN/W multilayer coatings deposited by HiPIMS. Mater. Lett. 2024, 357, 135737. [Google Scholar] [CrossRef]
- Grill, A. Review of the tribology of diamond-like carbon. Wear 1993, 168, 143–153. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Guo, P.; Sun, L.; Wei, J.; Liu, Y.; Li, S.; Wang, S.; Lee, K.R.; Ke, P.; et al. Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings. Friction 2022, 10, 1707–1721. [Google Scholar] [CrossRef]
- Yang, G.; Xu, L.; Li, D.; Li, N.; Zhang, G. Study on the lubrication mechanism of diamond-like carbon coating in two formulated lubricants with two viscosity grades. J. Mater. Eng. Perform. 2022, 31, 6711–6721. [Google Scholar] [CrossRef]
- Decrozant-Triquenaux, J.; Pelcastre, L.; Courbon, C.; Prakash, B.; Hardell, J. High temperature tribological behaviour of PVD coated tool steel and aluminium under dry and lubricated conditions. Friction 2021, 9, 802–821. [Google Scholar] [CrossRef]
- Reitschuster, S.; Maier, E.; Lohner, T.; Stahl, K.; Bobzin, K.; Kalscheuer, C.; Thiex, M.; Sperka, P.; Hartl, M. DLC-coated thermoplastics: Tribological analyses under lubricated rolling-sliding conditions. Tribol. Lett. 2022, 70, 121. [Google Scholar] [CrossRef]
- Bai, C.; Qiang, L.; Zhang, B.; Gao, K.; Zhang, J. Optimizing the tribological performance of DLC-coated NBR rubber: The role of hydrogen in films. Friction 2022, 10, 866–877. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Han, J.H.; Hwang, Y.H.; Xu, S.; Kim, D.E. One-step method to enhance biotribological properties and biocompatibility of DLC coating by ion beam irradiation. Friction 2022, 10, 1114–1126. [Google Scholar] [CrossRef]
- Humphrey, E.; Elisaus, V.; Rahmani, R.; Mohammadpour, M.; Theodossiades, S.; Morris, N.J. Diamond like-carbon coatings for electric vehicle transmission efficiency. Tribol. Int. 2023, 189, 108916. [Google Scholar] [CrossRef]
- Zeng, Q.; Yu, F.; Dong, G. Superlubricity behaviors of Si3N4/DLC films under PAO oil with nano boron nitride additive lubrication. Surf. Interface Anal. 2013, 45, 1283–1290. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, P.; Sun, L.; Li, X.; Ke, P.; Li, Q.; Wang, A. Tribological properties of Ti-doped diamond-like carbon coatings under dry friction and PAO oil lubrication. Surf. Interface Anal. 2019, 51, 361–370. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Ji, Z.; Xie, Y. Friction and wear behavior of hydrogenated diamond-like carbon coating against titanium alloys under large normal load and variable velocity. Ind. Lubr. Tribol. 2017, 69, 199–207. [Google Scholar] [CrossRef]
- Cui, L.; Lu, Z.; Wang, L. Environmental effect on the load-dependent friction behavior of a diamond-like carbon film. Tribol. Int. 2015, 82 Pt A, 195–199. [Google Scholar] [CrossRef]
- Hirano, M.; Shinjo, K. Atomistic locking and friction. Phys. Rev. B 1990, 41, 11837–11851. [Google Scholar] [CrossRef]
- Hirano, M.; Shinjo, K.; Kaneko, R.; Murata, Y. Anisotropy of frictional forces in muscovite. Phys. Rev. Lett. 1991, 67, 2642–2645. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, Z. Experimental advances in superlubricity. Friction 2014, 2, 182–192. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, W.; Qi, W.; Chen, X.; Xu, J.; Zhang, C. Understanding the interfacial behaviors during superlubricity process of a-C:H film coated on the rough bearing steel surface. Tribol. Int. 2022, 171, 107558. [Google Scholar] [CrossRef]
- Yu, X.; Deng, W.; Chen, X. Macroscopic superlubricity enabled by the tribopair of nc-Ag/MoS2 and hydrogenated graphitic-like carbon films under high contact stress. Appl. Surf. Sci. 2023, 611 Pt B, 155814. [Google Scholar] [CrossRef]
- Chen, Y.; Su, F.; Li, Q.; Sun, J.; Lin, S.; Ma, G. Extremely enhanced friction and wear performance of hydrogen-free DLC film at elevated temperatures via Si doping. Tribol. Int. 2024, 199, 109981. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Wang, C.; Lu, Y.; Hao, J. High temperature tribology behavior of silicon and nitrogen doped hydrogenated diamond-like carbon (DLC) coatings. Tribol. Int. 2022, 175, 107845. [Google Scholar] [CrossRef]
- Vahidi, A.; Ferreira, F.; Oliveira, J. Comparative study of dry high-temperature tribological performance of hydrogen-free and hydrogenated DLC films deposited by HiPIMS in DOMS mode. Tribol. Int. 2024, 195, 109639. [Google Scholar] [CrossRef]
- Jang, S.; Rabbani, M.; Ogrinc, A.L.; Wetherington, M.T.; Martini, A.; Kim, S.H. Tribochemistry of Diamond-like Carbon: Interplay between Hydrogen Content in the Film and Oxidative Gas in the Environment. ACS Appl. Mater. Interfaces 2023, 15, 37997–38007. [Google Scholar] [CrossRef]
- Liu, X.; Umehara, N.; Tokoroyama, T.; Murashima, M. Tribological properties of ta-CNx coating sliding against steel and sapphire in unlubricated condition. Tribol. Int. 2019, 131, 102–111. [Google Scholar] [CrossRef]
- Zhang, W.; Tanaka, A.; Wazumi, K.; Koga, Y. Effect of environment on friction and wear properties of diamond-like carbon film. Thin Solid Films 2002, 413, 104–109. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, M.; He, Z. The unusual tribological behavior of diamond-like carbon films under high vacuum. Surf. Interface Anal. 2020, 52, 339–347. [Google Scholar] [CrossRef]
- Liñeira del Río, J.M.; Alba, A.; Guimarey MJ, G.; Prado, J.I.; Amigo, A.; Fernández, J. Surface tension, wettability and tribological properties of a low viscosity oil using CaCO3 and CeF3 nanoparticles as additives. J. Mol. Liq. 2023, 391 Pt A, 123188. [Google Scholar] [CrossRef]
- Deshpande, P.; Dassenoy, F.; Minfray, C.; Jenei, I.Z.; Le Mogne, T.; Thiebaut, B. Effect of Adding TiO2 Nanoparticles to a Lubricant Containing MoDTC on the Tribological Behavior of Steel/Steel Contacts Under Boundary Lubrication Conditions. Tribol. Lett. 2020, 68, 39. [Google Scholar] [CrossRef]
- Qiu, S.; Dong, J.; Chen, G. Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils. Lubr. Sci. 2000, 12, 205–212. [Google Scholar]
- Yang, T.; Wang, X.; Liu, H.; Zhao, Q.; Gong, K.; Li, W.; Liang, Y.; Wang, X. An inorganic-organic hybrid CQDs@PVP lubricant additive: Achieving low friction and wear in PEG and water. Friction 2024, 12, 2281–2297. [Google Scholar] [CrossRef]
- Yuan, Y.; Amann, T.; Xu, Y.; Zhang, Y.; Chen, J.; Yuan, C.; Li, K. Load and velocity boundaries of oil-based superlubricity using 1,3-diketone. Friction 2023, 11, 704–715. [Google Scholar] [CrossRef]
- Du, S.; Zhang, C.; Luo, Z. Study on the tribological properties of metal rolling bearing under lubrication with diketone lubricants. Sci. China Technol. Sci. 2024, 67, 2003–2017. [Google Scholar] [CrossRef]
- Gao, K.; Jiao, J.; Wang, Z.; Xie, G.; Luo, J. Superlubricity induced by partially oxidized black phosphorus on engineering steel. Friction 2023, 11, 1592–1605. [Google Scholar] [CrossRef]
- Masuko, M.; Ono, T.; Aoki, S.; Suzuki, A.; Ito, H. Friction and wear characteristics of DLC coatings with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 2015, 82, 350–357. [Google Scholar] [CrossRef]
- Vengudusamy, B.; Green, J.H.; Lamb, G.D.; Spikes, H.A. Influence of hydrogen and tungsten concentration on the tribological properties of DLC/DLC contacts with ZDDP. Wear 2013, 298–299, 109–119. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Pakseresht, A.; Mosas KK, A.; Galusek, D. Doping effects on the tribological performance of diamond-like carbon coatings: A review. J. Mater. Res. Technol. 2023, 27, 7748–7765. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Lapitskaya, V.; Khabarava, A.; Trukhan, R.; Chizhik, S.; Torskaya, E.; Mezrin, A.; Fedorov, S.; Rogachev, A.; Warcholinski, B. Silicon addition as a way to control properties of tribofilms and friction of DLC coatings. Appl. Surf. Sci. 2023, 608, 155115. [Google Scholar] [CrossRef]
- Wei, A.; Ma, G.; Li, G.; Li, Z.; Han, C.; Zhao, H.; Guo, W.; Xing, Z.; Wang, H. Effect of atomic oxygen erosion on mechanical and tribological properties of Cr and B doped hydrogen-containing diamond-like carbon films. Diam. Relat. Mater. 2023, 135, 109813. [Google Scholar] [CrossRef]
- Mori, H.; Tohyama, M.; Okuyama, M.; Ohmori, T.; Ikeda, N.; Hayashi, K. Low friction property of boron doped DLC under engine oil. Tribol. Online 2017, 12, 135–140. [Google Scholar] [CrossRef]
- Jusufi, A.; Jaishankar, A.; Onodera, K.; Vreeland, J.; Konicek, A.R.; Watanabe, H.; Sato, T.; Manabe, K.; Yamamori, K.; Schilowitz, A.M. Adsorption properties of molybdenum based friction modifiers on boron-doped DLC. Wear 2019, 426–427, 805–812. [Google Scholar] [CrossRef]
- Liu, A.Y.; Cohen, M.L. Prediction of new low compressibility solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yamaguchi, R.; Umehara, N.; Murashima, M.; Tokoroyama, T. Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication. Wear 2017, 390–391, 312–321. [Google Scholar] [CrossRef]
- Liu, X.; Yamaguchi, R.; Umehara, N.; Deng, X.; Kousaka, H.; Murashima, M. Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribol. Int. 2017, 105, 193–200. [Google Scholar] [CrossRef]
- Ru, L.; Wang, Y.; Liu, J.; Tao, S.; Xiao, J. Hydrophobic, anticorrosion, and frictional properties of F-DLC films prepared by magnetron sputtering. Vacuum 2023, 217, 112567. [Google Scholar] [CrossRef]
- Bhowmick, S.; Sen, F.G.; Banerji, A.; Alpas, A.T. Friction and adhesion of fluorine containing hydrophobic hydrogenated diamond-like carbon (F-H-DLC) coating against magnesium alloy AZ91. Surf. Coat. Technol. 2015, 267, 21–31. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Huang, W.; Wang, L.; He, H.; Liu, C. The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys. Surf. Coat. Technol. 2017, 316, 22–29. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wan, Z.X.; Ding, J.C.; Zhang, S.; Wang, Q.M.; Kim, K.H. Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films. Appl. Surf. Sci. 2018, 435, 963–973. [Google Scholar] [CrossRef]
- Yu, W.; Huang, W.; Wang, J.; Su, Y.; Long, Q.; Wang, L.; Zhu, L. High-temperature tribological performance of the Si-gradually doped diamond-like carbon film. Vacuum 2021, 191, 110387. [Google Scholar] [CrossRef]
- Kassim KA, M.; Tokoroyama, T.; Murashima, M.; Umehara, N. The wear classification of MoDTC-derived particles on silicon and hydrogenated diamond-like carbon at room temperature. Tribol. Int. 2020, 147, 106176. [Google Scholar] [CrossRef]
- Dai, W.; Wang, A.; Wang, Q. Microstructure and mechanical property of diamond-like carbon films with ductile copper incorporation. Surf. Coat. Technol. 2015, 272, 33–38. [Google Scholar] [CrossRef]
- Binjua, D.E.; Kim, S.S.; Jang, Y.J.; Kim, J.K. Friction and wear mechanisms of Cu/ta-C coatings under PAO-4 and PAO-4 with MoDTC lubrication. J. Eng. Adv. 2020, 1, 183–187. [Google Scholar] [CrossRef]
- Gharam, A.A.; Lukitsch, M.J.; Balogh, M.P.; Irish, N.; Alpas, A.T. High temperature tribological behavior of W-DLC against aluminum. Surf. Coat. Technol. 2011, 206, 1905–1912. [Google Scholar] [CrossRef]
- Banerji, A.; Bhowmick, S.; Alpas, A.T. High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys. Surf. Coat. Technol. 2014, 241, 93–104. [Google Scholar] [CrossRef]
- Austin, L.; Liskiewicz, T.; Kolev, I.; Zhao, H.; Neville, A. The influence of antiwear additive ZDDP on doped and undoped diamond-like carbon coatings. Surf. Interface Anal. 2015, 47, 755–763. [Google Scholar] [CrossRef]
- Dai, W.; Gao, X.; Liu, J.; Wang, Q. Microstructure, mechanical property and thermal stability of diamond-like carbon coatings with Al, Cr and Si multi-doping. Diam. Relat. Mater. 2016, 70, 98–104. [Google Scholar] [CrossRef]
- Yu, W.; Huang, W.; Wang, J.; Long, Q.; Su, Y.; Wang, L.; Guan, X. Compositional design of diamond-like carbon film for tribological performance at elevated temperature: Si and W co-doping. J. Non-Cryst. Solids 2022, 576, 121281. [Google Scholar] [CrossRef]
- Wei, X.; Chen, L.; Zhang, M.; Lu, Z.; Zhang, G. Effect of dopants (F, Si) material on the structure and properties of hydrogenated DLC film by plane cathode PECVD. Diam. Relat. Mater. 2020, 110, 108102. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Xue, Q. Achieving low tribological moisture sensitivity by a-C:Si:Al carbon-based coating. Tribol. Lett. 2011, 43, 329–339. [Google Scholar] [CrossRef]
- Ren, S.; Zheng, S.; Pu, J.; Lu, Z.; Zhang, G. Study of tribological mechanisms of carbon-based coatings in antiwear additive containing lubricants under high temperature. RSC Adv. 2015, 5, 66426–66437. [Google Scholar] [CrossRef]
- Bondarev, A.; Simonovic, K.; Vitu, T.; Kožmín, P.; Syrovatka, Š.; Polcar, T. Textured coating or coated texture: Femtosecond laser texturing of a-C:H/WC coatings for dry friction applications. Surf. Coat. Technol. 2023, 469, 129808. [Google Scholar] [CrossRef]
- Shi, J.; Ma, G.; Li, G.; Yong, Q.; Guo, W.; Xing, Z.; Wang, H. Tribological behavior of graphene/DLC coatings after AO and UV irradiation in vacuum environment. Mater. Lett. 2023, 349, 134760. [Google Scholar] [CrossRef]
- bin Taib, M.T.; Umehara, N.; Tokoroyama, T.; Murashima, M. The effect of UV irradiation to a-C:H on friction and wear properties under PAO oil lubrication including MoDTC and ZnDTP. Tribol. Online 2018, 13, 119–130. [Google Scholar] [CrossRef]
- Wei, A.; Ma, G.; Li, G.; Li, Z.; Han, C.; Zhao, H.; Guo, W.; Xing, Z.; Wang, H. Effect of space UV irradiation on the mechanical and tribological properties of Cr and B doped hydrogen-containing diamond-like films. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 513–522. [Google Scholar] [CrossRef]
- Wei, B.; Chen, W.; Guo, S.; Cheng, J.; Yuan, H.; Zhou, Y.; Luo, H.; Li, D. Study on the tribological characteristics of surface triangular textured TC4 alloy prepared by SLM technology. Surf. Coat. Technol. 2024, 482, 130735. [Google Scholar] [CrossRef]
- MacLucas, T.; Grutzmacher, P.G.; Leonhard-Trautmann, P.; Suarez, S.; Gachot, C.; Mucklich, F. Combining carbon nanoparticle coatings and laser surface texturing for enhanced lubricity under high loads. Tribol. Lett. 2024, 72, 38. [Google Scholar] [CrossRef]
- Marian, M.; Zambrano, D.F.; Rothammer, B.; Waltenberger, V.; Boidi, G.; Krapf, A.; Merle, B.; Stampfl, J.; Rosenkranz, A.; Gachot, C.; et al. Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers. Surf. Coat. Technol. 2023, 466, 129682. [Google Scholar] [CrossRef]
- Brittain, R.; Liskiewicz, T.; Morina, A.; Neville, A.; Yang, L. Diamond-like carbon graphene nanoplatelet nanocomposites for lubricated environments. Carbon 2023, 205, 485–498. [Google Scholar] [CrossRef]
- Wei, C.; Wang, C.I.; Tai, F.C.; Ting, K.; Chang, R.C. The effect of CNT content on the surface and mechanical properties of CNTs doped diamond like carbon films. Diam. Relat. Mater. 2010, 19, 562–566. [Google Scholar] [CrossRef]
- Komori, K.; Umehara, N. Effect of surface morphology of diamond-like carbon coating on friction, wear behavior and tribo-chemical reactions under engine-oil lubricated condition. Tribol. Int. 2015, 84, 100–109. [Google Scholar] [CrossRef]
- Kržan, B.; Novotny-Farkas, F.; Vižintin, J. Tribological behavior of tungsten-doped DLC coating under oil lubrication. Tribol. Int. 2009, 42, 229–235. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, L.; Wang, Y.; Kang, J.; Wang, H.; Ma, G.; Huang, H.; Zhang, G.; Yue, W. Effects of annealing treatment on tribological behavior of tungsten-doped diamond-like carbon film under lubrication (part 2): Tribological behavior under MoDTC lubrication. Friction 2022, 10, 1061–1077. [Google Scholar] [CrossRef]
- Perveev, V.F.; Gordash Yu, T.; Srebrodol’skaya, I.I.; Murygina, K.P. Organic molybdenum complexes for use as lube oil additives. Chem. Technol. Fuels Oils 1974, 10, 850–853. [Google Scholar] [CrossRef]
- Parenago, O.P.; Kuz’mina, G.N.; Zaimovskaya, T.A. Sulfur-containing molybdenum compounds as high-performance lubricant additives (Review). Petrol. Chem. 2017, 57, 631–642. [Google Scholar] [CrossRef]
- Spikes, H. The history and mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469–489. [Google Scholar] [CrossRef]
- Nicholls, M.A.; Do, T.; Norton, P.R.; Kasrai, M.; Bancroft, G.M. Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 2005, 38, 15–39. [Google Scholar] [CrossRef]
- Vengudusamy, B.; Green, J.H.; Lamb, G.D.; Spikes, H.A. Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts. Tribol. Int. 2011, 44, 165–174. [Google Scholar] [CrossRef]
- Mosey, N.J.; Müser, M.H.; Woo, T.K. Molecular mechanisms for the functionality of lubricant additives. Science 2005, 307, 1612–1615. [Google Scholar] [CrossRef]
- Martin, J.M.; Onodera, T.; Minfray, C.; Dassenoy, F.; Miyamoto, A. The origin of anti-wear chemistry of ZDDP. Faraday Discuss. 2012, 156, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Kosarieh, S.; Morina, A.; Neville, A.; Lainé, E.; Flemming, J. The effect of MoDTC-type friction modifier on the wear performance of a hydrogenated DLC coating. Wear 2013, 302, 890–898. [Google Scholar] [CrossRef]
- Ueda, M.; Kadiric, A.; Spikes, H. Wear of hydrogenated DLC in MoDTC-containing oils. Wear 2021, 474–475, 203869. [Google Scholar] [CrossRef]
- De Feo, M.; Bouchet, M.D.B.; Minfray, C.; Esnouf, C.; Le Mogne, T.; Meunier, F.; Yang, L.; Thiebaut, B.; Pavan, S.; Martin, J.M. Formation of interfacial molybdenum carbide for DLC lubricated by MoDTC: Origin of wear mechanism. Wear 2017, 370–371, 17–28. [Google Scholar] [CrossRef]
- Sugimoto, I.; Honda, F.; Inoue, K. Analysis of wear behavior and graphitization of hydrogenated DLC under boundary lubricant with MoDTC. Wear 2013, 305, 124–128. [Google Scholar] [CrossRef]
- Chen, S.; Song, N.; Zhang, S.; Zhang, Y.; Yu, L.; Zhang, P. Synergistic tribological effect between polyisobutylene succinimide-modified molybdenum oxide nanoparticle and zinc dialkyldithiophosphate for reducing friction and wear of diamond-like carbon coating under boundary lubrication. Friction 2023, 11, 2021–2035. [Google Scholar] [CrossRef]
- Okubo, H.; Yonehara, M.; Sasaki, S. In situ Raman observations of the formation of MoDTC-derived tribofilms at steel/steel contact under boundary lubrication. Tribol. Trans. 2018, 61, 1040–1047. [Google Scholar] [CrossRef]
- Thornley, A.; Wang, Y.; Wang, C.; Chen, J.; Huang, H.; Liu, H.; Neville, A.; Morina, A. Optimizing the Mo concentration in low viscosity fully formulated oils. Tribol. Int. 2022, 168, 107437. [Google Scholar] [CrossRef]
- Grossiord, C.; Varlot, K.; Martin, J.M.; Mogne Th Le Esnouf, C.; Inoue, K. MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 1998, 31, 737–743. [Google Scholar] [CrossRef]
- Hou, X.; Bai, P.; Li, J.; Li, Y.; Cao, H.; Wen, X.; Meng, Y.; Ma, L.; Tian, Y. MoS2 reinforced PEEK composite for improved aqueous boundary lubrication. Friction 2023, 11, 1660–1672. [Google Scholar] [CrossRef]
- Vengudusamy, B.; Green, J.H.; Lamb, G.D.; Spikes, H.A. Behaviour of MoDTC in DLC/DLC and DLC/steel contacts. Tribol. Int. 2012, 54, 68–76. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.W. Tribological characteristics of Cr/CrN/a-C:H:W/a-C:H coating under boundary lubrication conditions with glycerol mono-oleate (GMO) and molybdenum dithiocarbamate (MoDTC). Wear 2015, 342–343, 107–116. [Google Scholar] [CrossRef]
- Okubo, H.; Tadokoro, C.; Sumi, T.; Tanaka, N.; Sasaki, S. Wear acceleration mechanism of diamond-like carbon (DLC) films lubricated with MoDTC solution: Roles of tribofilm formation and structural transformation in wear acceleration of DLC films lubricated with MoDTC solution. Tribol. Int. 2019, 133, 271–287. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 95–107. [Google Scholar] [CrossRef]
- Jia, Z.F.; Wang, P.; Xia, Y.Q.; Zhang, H.B.; Pang, X.J.; Li, B. Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants. Appl. Surf. Sci. 2009, 255, 6666–6674. [Google Scholar] [CrossRef]
- Okubo, H.; Sasaki, S. In situ Raman observation of structural transformation of diamond-like carbon films lubricated with MoDTC solution: Mechanism of wear acceleration of DLC films lubricated with MoDTC solution. Tribol. Int. 2017, 113, 399–410. [Google Scholar] [CrossRef]
- Kosarieh, S.; Morina, A.; Flemming, J.; Lainé, E.; Neville, A. Wear mechanisms of hydrogenated DLC in oils containing MoDTC. Tribol. Lett. 2016, 64, 4. [Google Scholar] [CrossRef]
- Haque, T.; Morina, A.; Neville, A.; Kapadia, R.; Arrowsmith, S. Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 2009, 266, 147–157. [Google Scholar] [CrossRef]
- Kiw, Y.M.; Schaeffer, P.; Adam, P.; Thiébaut, B.; Boyer, C. Dithiocarbamate transfer reaction from methylene-bis(dithiocarbamates) to molybdenum dithiocarbamates in engine lubricants investigated using laboratory experiments. New J. Chem. 2022, 46, 22341–22352. [Google Scholar] [CrossRef]
- Liu, K.; Kang, J.J.; Zhang, G.A.; Lu, Z.B.; Yue, W. Effect of temperature and mating pair on tribological properties of DLC and GLC coatings under high pressure lubricated by MoDTC and ZDDP. Friction 2021, 9, 1390–1405. [Google Scholar] [CrossRef]
- Haque, T.; Morina, A.; Neville, A.; Kapadia, R.; Arrowsmith, S. Non-ferrous coating/lubricant interactions in tribological contacts: Assessment of tribofilms. Tribol. Int. 2007, 40, 1603–1612. [Google Scholar] [CrossRef]
- Dupont, J.; de Souza, R.F.; Suarez PA, Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 2002, 102, 3667–3692. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Liu, W.; Chen, Y.; Yu, L. Room-temperature ionic liquids: A novel versatile lubricant. Chem. Commun. 2001, 2244–2245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Chi, M.; Meyer, H.M., III; Blau, P.J.; Dai, S.; Luo, H. Nanostructure and composition of tribo-boundary films formed in ionic liquid lubrication. Tribol. Lett. 2011, 43, 205–211. [Google Scholar] [CrossRef]
- González, R.; Hernández Battez, A.; Blanco, D.; Viesca, J.L.; Fernández-González, A. Lubrication of TiN, CrN and DLC PVD Coatings with 1-butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribol. Lett. 2010, 40, 269–277. [Google Scholar] [CrossRef]
- Minami, I.; Inada, T.; Sasaki, R.; Nanao, H. Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 2010, 40, 225–235. [Google Scholar] [CrossRef]
- Sharma, V.; Doerr, N.; Aswath, P.B. Chemical-mechanical properties of tribofilms and their relationship to ionic liquid chemistry. RSC Adv. 2016, 6, 22341–22356. [Google Scholar] [CrossRef]
- Arshad, M.S.; Kovač, J.; Cruz, S.; Kalin, M. Physicochemical and tribological characterizations of WDLC coatings and ionic-liquid lubricant additives: Potential candidates for low friction under boundary-lubrication conditions. Tribol. Int. 2020, 151, 106482. [Google Scholar] [CrossRef]
- Hernández Battez, A.; Bartolomé, M.; Blanco, D.; Viesca, J.L.; Fernández-González, A.; González, R. Phosphonium cation-based ionic liquids as neat lubricants: Physicochemical and tribological performance. Tribol. Int. 2016, 95, 118–131. [Google Scholar] [CrossRef]
- Arshad, M.S.; Čoga, L.; Geue, T.; Kovač, J.; Cruz SM, A.; Kalin, M. The W-cluster reactive sites interaction model for WDLC coatings with ionic liquids. Tribol. Int. 2023, 185, 108550. [Google Scholar] [CrossRef]
- Qu, J.; Meyer, H.M., III; Cai, Z.B.; Ma, C.; Luo, H. Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms. Wear 2015, 332–333, 1273–1285. [Google Scholar] [CrossRef]
- Cai, Z.B.; Meyer, H.M., III; Ma, C.; Chi, M.; Luo, H.; Qu, J. Comparison of the tribological behavior of steel-steel and Si3N4-steel contacts in lubricants with ZDDP or ionic liquid. Wear 2014, 319, 172–183. [Google Scholar] [CrossRef]
- Qu, J.; Luo, H.; Chi, M.; Ma, C.; Blau, P.J.; Dai, S.; Viola, M.B. Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol. Int. 2014, 71, 88–97. [Google Scholar] [CrossRef]
- Espejo, C.; Thiébaut, B.; Jarnias, F.; Wang, C.; Neville, A.; Morina, A. MoDTC tribochemistry in steel/steel and steel/DLC systems lubricated with model lubricants and fully formulated engine oils. J. Tribol.-T ASME 2019, 141, 012301. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Q.; Xie, H.; Liu, S.; Ye, Q.; Zhou, F.; Liu, W. In-situ formation of nitrogen doped microporous carbon nanospheres derived from polystyrene as lubricant additives for anti-wear and friction reduction. Friction 2024, 12, 439–451. [Google Scholar] [CrossRef]
- Hu, J.S.; Wang, C.F.; Zhang, P.Y.; Zhang, S.M.; Zhang, Y.J. Diisooctyl sebacate-containing nickel nanoparticles for lubrication of steel sliding parts under magnetic fields. ACS Appl. Nano Mater. 2021, 4, 7007–7016. [Google Scholar] [CrossRef]
- Wu, L.L.; Lei, X.; Zhang, Y.J.; Zhang, S.M.; Yang, G.B.; Zhang, P.Y. The tribological mechanism of cerium oxide nanoparticles as lubricant additive of poly-alpha-olefin. Tribol. Lett. 2020, 68, 101. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, Y.J.; Zhang, S.M.; Yang, G.B.; Gao, C.P.; Zhou, C.H.; Zhang, C.L.; Zhang, P.Y. One step synthesis of ZnO nanoparticles from ZDDP and its tribological properties in steel-aluminum contacts. Tribol. Int. 2020, 141, 105890. [Google Scholar] [CrossRef]
- Htwe YZ, N.; Al-Janabi Aws, S.; Wadzer, Y.; Mamat, H. Review of tribological properties of nanoparticle-based lubricants and their hybrids and composites. Friction 2024, 12, 569–590. [Google Scholar] [CrossRef]
- Duan, L.; Li, J.; Duan, H. Nanomaterials for lubricating oil application: A review. Friction 2023, 11, 647–684. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, S.; Yu, L.; Zhang, P.; Zhang, Z. Preparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological properties. Tribol. Lett. 2013, 51, 73–83. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, L.; Zhang, Y.; Chen, Y.; Zhang, S.; Zhang, P. The effect of Ni nanoparticles on the lubrication of a DLC-based solid-liquid synergetic system in all lubrication regimes. Tribol. Lett. 2017, 65, 31. [Google Scholar] [CrossRef]
- Li, X.; Murashima, M.; Umehara, N. Effect of nanoparticles as lubricant additives on friction and wear behavior of tetrahedral amorphous carbon (ta-C) coating. J. Tribol. 2018, 16, 15–29. [Google Scholar]
- Aboua, K.A.M.; Umehara, N.; Kousaka, H.; Tokoroyama, T.; Murashima, M.; Mabuchi, Y.; Higuchi, T.; Kawaguchi, M. Effect of carbon diffusion on friction and wear behaviors of diamond-like carbon coating against Cr-plating in boundary base oil lubrication. Tribol. Online 2018, 13, 290–300. [Google Scholar] [CrossRef]
- Aboua, K.A.M.; Umehara, N.; Kousaka, H.; Tokoroyama, T.; Murashima, M.; Mabuchi, Y.; Higuchi, T.; Kawaguchi, M. Effect of carbon diffusion on friction and wear behaviors of diamond-like carbon coating against germanium in boundary base oil lubrication. Tribol. Lett. 2019, 67, 65. [Google Scholar] [CrossRef]
- Aboua, K.A.M.; Umehara, N.; Kousaka, H.; Deng, X.; Tasdemir, H.A.; Mabuchi, Y.; Higuchi, T.; Kawaguchi, M. Effect of carbon diffusion on friction and wear properties of diamond-like carbon in boundary base oil lubrication. Tribol. Int. 2017, 113, 389–398. [Google Scholar] [CrossRef]
- Scace, R.I.; Slack, G.A. Solubility of carbon in silicon and germanium. J. Chem. Phys. 1959, 30, 1551–1555. [Google Scholar] [CrossRef]
- Aboua, K.A.M.; Umehara, N.; Kousaka, H.; Tokoroyama, T.; Murashima, M.; Mustafa, M.M.B.; Mabuchi, Y.; Higuchi, T.; Kawaguchi, M. Effect of mating material and graphitization on wear of a-C:H coating in boundary base oil lubrication. Tribol. Lett. 2020, 68, 24. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Wang, F.; Zheng, W. Improving frictional properties of DLC films by surface energy manipulation. RSC Adv. 2018, 8, 11388–11394. [Google Scholar] [CrossRef]
- Lv, F.; Wang, W.; Li, J.; Gao, Y.; Wang, K. A brief review of tribological properties for black phosphorus. Friction 2024, 12, 823–844. [Google Scholar] [CrossRef]
- Sun, W.; Song, Q.; Liu, K.; Zhang, Q.; Tao, Z.; Ye, J. Comparative study on boundary lubrication of Ti3C2Tx MXene and graphene oxide in water. Friction 2023, 11, 1641–1659. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, T.; Wang, Y.; Liu, S.; Ye, Q.; Zhou, F. Boron-nitrogen codoped carbon nanosheets as oil-based lubricant additives for antioxidation, antiwear, and friction reduction. ACS Sustain. Chem. Eng. 2023, 11, 11867–11877. [Google Scholar] [CrossRef]
- Du, G.; Zhang, Y.; Fan, S.; Song, N.; Zhang, S.; Zhang, P. Self-dispersed molybdenum disulfide quantum dot/graphene crumpled ball as efficient high temperature lubricant additive. Friction 2024, 12, 1771–1784. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Y.; Liu, B.; Yu, L.; Tong, Y.; Yan, M.; Yang, Z.; Hao, Y.; Shangguan, L.; Zhang, S.; et al. Research progresses of nanomaterials as lubricant additives. Friction 2024, 12, 1347–1391. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Wang, C.; Zheng, L.; Li, Z.; Ren, T. Tribological mechanisms of the synergistic effect between sulfur- and phosphorus-free organic molybdenum and ZDDP. Tribol. Int. 2023, 178, 108078. [Google Scholar] [CrossRef]
- Qi, W.; Chen, L.; Liu, H.C.; Lv, L.G. Molecular structures, tribological properties, and working mechanisms of sulfur- and phosphorus-free organic molybdenum as additives in lubricants: A short review. J. Tribol. 2024, 146, 110801. [Google Scholar] [CrossRef]
- Erdemir, A.; Eryilmaz, O. Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry. Friction 2014, 2, 140–155. [Google Scholar] [CrossRef]
Lubrication Methods | Advantages | Disadvantages |
---|---|---|
Oils | (1) Non-sensitive to outer atmosphere, (2) Low cost | (1) High COF, (2) Low thermal stability, (3) Not suitable for space applications |
DLC coatings | (1) Low COF (even superlubricity), (2) High thermal stability, (3) Suitable for space applications | (1) High wear due to surface graphitization, (2) Sensitive to outer atmosphere |
SLCL systems | (1) Non-sensitive to outer atmosphere, (2) Low COF and wear | (1) Not suitable for space applications, (2) Low thermal stability |
IUPAC Name | Abbr. | Mol. Structure |
---|---|---|
Base oil | ||
1. Glycerol, (C3H8O3) | G | |
Additives/ILs | ||
1. Tributylmethylphosphonium dimethylphosphate, (C15H36O4P2) | PP | |
2. (2-hydroxyethyl) trimethylammonium dimethylphosphate, (C7H20NO5P) | AM | |
3. 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([BMP][FAP]), (C15H20F18NP) | BMP | |
4. Zinc dialkyldithiophosphates, (Zn[S2P(OR)2]2) | ZDDP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, W.; Chen, L.; Li, H.; Tang, L.; Xu, Z. Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges. Coatings 2024, 14, 1475. https://doi.org/10.3390/coatings14121475
Qi W, Chen L, Li H, Tang L, Xu Z. Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges. Coatings. 2024; 14(12):1475. https://doi.org/10.3390/coatings14121475
Chicago/Turabian StyleQi, Wei, Lei Chen, Hui Li, Lieming Tang, and Zhiliang Xu. 2024. "Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges" Coatings 14, no. 12: 1475. https://doi.org/10.3390/coatings14121475
APA StyleQi, W., Chen, L., Li, H., Tang, L., & Xu, Z. (2024). Solid–Liquid Composite Lubrication (SLCL) Based on Diamond-Like Carbon (DLC) Coatings and Lubricating Oils: Properties and Challenges. Coatings, 14(12), 1475. https://doi.org/10.3390/coatings14121475