Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings
Abstract
:1. Introduction
2. Experimental Detail and Methods
2.1. Coating Preparation
2.2. Characterization Method of Coating
3. Results and Discussion
3.1. Microstructure of the Coating
3.2. Hardness of Coating
3.3. Friction and Wear Properties of Coating
4. Conclusions
- (1)
- The addition of the Si element promotes the formation of the BCC phase solid solution, which transforms the main phase structure of the FeCrCoMnSix HEAs coating from FCC + HCP dual-phase to FCC + HCP + BCC three-phase solid solution. When x = 0.6, the structure is transformed from equiaxed crystals to finer and denser columnar dendritic crystals with obvious eutectic characteristics. When the Si content increases to x = 0.9 and 1.0, the hard metal silicate phase is formed in the coating, the micro structure is typical dendritic crystals, and there is clear element segregation.
- (2)
- When x = 0.6, the coating has the highest hardness (425.8 HV) due to the solid solution strengthening and dispersion strengthening caused by adding Si elements and the dense and fine eutectic structure. However, with much greater Si content (x = 0.9 and 1.0), the increase in FCC phase solid solution and the decrease in the internal stress results in a slight hardness decrease.
- (3)
- The analysis of the coating’s friction and wear properties in the simulated seawater environment shows that when the content of Si is 0.6, the coating has the lowest COF (0.202) and wear rate (4.06 × 10−5 mm3/N·m) due to the dense structure, as well as the uniformly dispersed fine, hard metal silicide, thus exhibiting excellent wear resistance. With the increase in Si content, the coating’s wear mechanism changes from adhesive and abrasive wear to oxidative wear.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.B.; Li, S.N.; Yang, X.; Shuai, C.G.; Li, Z.Y.; Wang, X. Improvement of the static and dynamic characteristics of water-lubricated bearings with integrated Halbach magnet arrays. Tribol. Trans. 2023, 66, 302–315. [Google Scholar] [CrossRef]
- Liu, Q.L.; Ouyang, W.; Li, R.Q.; Jin, Y.; He, T. Experimental research on lubrication and vibration characteristics of water-lubricated stern bearing for underwater vehicles under extreme working conditions. Wear 2023, 523, 204778. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.X. New advances in high-entropy alloys. Entropy 2020, 22, 1158. [Google Scholar] [CrossRef]
- Krishna, S.A.; Noble, N.; Radhika, N.; Saleh, B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. J. Manuf. Process. 2024, 109, 583–606. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.Y.; Wang, Q.; Qi, F.H.; Kong, M.K.; Han, B. Investigation of the microstructure and properties of CoCrFeNiMo high-entropy alloy coating prepared through high-speed laser cladding. Coatings 2023, 13, 1211. [Google Scholar] [CrossRef]
- Wang, M.L.; Lu, Y.P.; Zhang, G.J.; Cui, H.Z.; Xu, D.F.; Wei, N.; Li, T.J. A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding. Vacuum 2021, 184, 109905. [Google Scholar] [CrossRef]
- Yu, B.X.; Ren, Y.S.; Zeng, Y.; Ma, W.H.; Morita, K.; Zhan, S.; Lei, Y.; Lv, G.Q.; Li, S.Y.; Wu, J.J. Recent progress in high-entropy alloys: A focused review of preparation processes and properties. J. Mater. Res. Technol. 2024, 29, 2689–2719. [Google Scholar] [CrossRef]
- Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef]
- Jiang, J.; Li, R.; Yuan, T.; Niu, P.; Chen, C.; Zhou, K. Microstructural evolution and wear performance of the high-entropy FeMnCoCr alloy/TiC/CaF2 self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold. J. Mater. Res. 2019, 34, 1714–1725. [Google Scholar] [CrossRef]
- Ghadami, F.; Aghdam, A.S.R.; Ghadami, S. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: A critical review. Vacuum 2021, 185, 109980. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.Q.; Manladan, S.M.; Geng, K.P.; Hu, S.S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, Z.; Shi, J.C.; Wang, Z.Y.; Zhang, J.Y. The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 2019, 161, 143–149. [Google Scholar] [CrossRef]
- Qin, G.; Chen, R.; Zheng, H.; Fang, H.; Wang, L.; Su, Y.; Guo, J.; Fu, H. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. J. Mater. Sci. Technol. 2019, 35, 578–583. [Google Scholar] [CrossRef]
- Yu, W.Q.; Zeng, H.Q.; Sun, Y.M.; Hua, Z. Effect of Mo addition on the thermal stability, microstructure and magnetic property of FeCoZrBCu alloys. Vacuum 2017, 137, 175–182. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhang, X.M.; Quan, H.; Chen, Y.J.; Wang, S.; Zhang, S. Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering. J. Alloy Compd. 2022, 895, 162709. [Google Scholar] [CrossRef]
- Liu, P.F.; Si, W.D.; Zhang, D.B.; Dai, S.C.; Jiang, B.C.; Shu, D.; Wu, L.L.; Zhang, C.; Zhang, M.S. Microstructure and friction properties of CoCrFeMnNiTix high-entropy alloy coating by laser cladding. Materials 2022, 15, 4669. [Google Scholar] [CrossRef]
- Ma, S.B.; Zhang, C.Z.; Li, L.; Yang, Y.H. Microstructure and properties of CoCrFeNiMnTix high-entropy alloy coated by laser cladding. Coatings 2024, 14, 620. [Google Scholar] [CrossRef]
- Kukshal, V.; Patnaik, A.; Bhat, I.K. Corrosion and thermal behaviour of AlCr1.5CuFeNi2Tix high-entropy alloys. Mater. Today 2018, 5, 17073–17079. [Google Scholar] [CrossRef]
- Wei, D.X.; Gong, W.; Tsuru, T.; Lobzenko, I.; Li, X.Q.; Harjo, S.; Kawasaki, T.; Do, H.S.; Bae, J.W.; Wagner, C.; et al. Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys. Int. J. Plast. 2022, 159, 103433. [Google Scholar] [CrossRef]
- Simsek, I.B.A.; Arik, M.N.; Talas, S.; Kurt, A. The effect of B addition on the microstructural and mechanical properties of FeNiCoCrCu high entropy alloys. Metall. Mater. Trans. A 2021, 52, 1749–1758. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Z.H.; Wang, X.B.; Lu, Y.K.; Wang, X.H.; Liu, Y.; Fan, X.H. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 136–145. [Google Scholar] [CrossRef]
- Gu, X.Y.; Zhuang, Y.X.; Jia, P. Evolution of the microstructure and mechanical properties of as-cast Al0.3CoCrFeNi high entropy alloys by adding Si content. Mater. Sci. Eng. A-Struct. 2022, 840, 142983. [Google Scholar] [CrossRef]
- Liu, H.; Sun, S.F.; Zhang, T.; Zhang, G.Z.; Yang, H.F.; Hao, J.B. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2021, 405, 126522. [Google Scholar] [CrossRef]
- Huang, L.; Wang, X.J.; Jia, F.C.; Zhao, X.C.; Huang, B.X.; Ma, J.; Wang, C.Z. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys. Mater. Lett. 2021, 282, 128809. [Google Scholar] [CrossRef]
- Chen, X.C.; Kato, T. Growth mechanism and composition of ultrasmooth a-C:H: Si films grown from energetic ions for superlubricity. J. Appl. Phys. 2014, 115, 044908. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Hu, Y.L.; Tong, Y.G.; Cai, Z.H.; Liu, J.; Wang, H.D.; Liao, J.Z.; Xu, S.; Li, L.K. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy. Tribol. Int. 2023, 182, 108366. [Google Scholar] [CrossRef]
- Noble, N.; Radhika, N.; Sathishkumar, M.; Saleh, B. Characterisation and property evaluation of high entropy alloy coating on 316L steel via thermal spray synthesis. Tribol. Int. 2023, 185, 108525. [Google Scholar] [CrossRef]
- Monette, Z.; Kasar, A.K.; Daroonparvar, M.; Menezes, P.L. Supersonic particle deposition as an additive technology: Methods, challenges, and applications. Int. J. Adv. Manuf. Technol. 2020, 106, 2079–2099. [Google Scholar] [CrossRef]
- Ralls, A.M.; Daroonparvar, M.; Sikdar, S.; Rahman, M.H.; Monwar, M.; Watson, K.; Kay, C.M.; Menezes, P.L. Tribological and corrosion behavior of high pressure cold sprayed duplex 316 L stainless steel. Tribol. Int. 2022, 169, 107471. [Google Scholar] [CrossRef]
- Ralls, A.M.; Kasar, A.K.; Daroonparvar, M.; Siddaiah, A.; Kumar, P.; Kay, C.M.; Misra, M.; Menezes, P.L. Effect of gas propellant temperature on the microstructure, friction, and wear resistance of high-pressure cold sprayed Zr7O2 coatings on Al6061 alloy. Coatings 2022, 12, 263. [Google Scholar] [CrossRef]
- Liu, C.M.; Li, C.G.; Zhang, Z.; Sun, S.; Zeng, M.; Wang, F.F.; Guo, Y.J.; Wang, J.Q. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys. Opt. Laser Technol. 2020, 123, 105926. [Google Scholar] [CrossRef]
- Nguyen, C.; Tieu, A.K.; Deng, G.; Wexler, D.; Tran, B.; Vo, T.D. Study of wear and friction properties of a Co-free CrFeNiAl0.4Ti0.2 high entropy alloy from 600 to 950 °C. Tribol. Int. 2022, 169, 107453. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, H.G.; Zhang, J.F.; Xie, Z.H. Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys. Mater. Sci. Eng. A-Struct. 2020, 769, 138514. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Li, T.; Zhang, M.; Liu, B.; Liu, Y.; Wang, L.; Hu, S. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding. Surf. Coat. Technol. 2020, 385, 125326. [Google Scholar] [CrossRef]
- Zhu, J.M.; Fu, H.M.; Zhang, H.F.; Wang, A.M.; Li, H.; Hu, Z.Q. Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng. A-Struct. 2010, 527, 7210–7214. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.L.; Qi, H.; Zhang, W.; Chen, R.R.; Su, R.M.; Yu, B.; Qu, Y.D. Effect of non-metallic silicon content on the microstructure and corrosion behaviour of AlCoCrFeNi high entropy alloys. Mater. Chem. Phys. 2024, 315, 128974. [Google Scholar] [CrossRef]
- Lin, T.X.; Feng, M.Y.; Lian, G.F.; Lu, H.; Chen, C.R.; Huang, X. Effects of Si content on the microstructure and properties of CoCrFeMnNiSix high-entropy alloy coatings by laser cladding. Mater. Charact. 2024, 216, 114246. [Google Scholar] [CrossRef]
- Gu, X.Y.; Zhuang, Y.X.; Huang, D. Corrosion behaviors related to the microstructural evolutions of as-cast Al0.3CoCrFeNi high entropy alloy with addition of Si and Ti elements. Intermetallics 2022, 147, 107600. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Sun, S.F.; Zhang, G.Z.; Tian, X.H.; Chen, P.J. Microstructure and dislocation density of AlCoCrFeNiSix high entropy alloy coatings by laser cladding. Mater. Lett. 2021, 283, 128746. [Google Scholar] [CrossRef]
- Li, Z.; Mei, K.T.; Dong, J.W.; Yang, Y.; Sun, J.Q.; Luo, Z. An investigation on the wear and corrosion resistance of AlCoCrFeNi high-entropy alloy coatings enhanced by Ti and Si. Surf. Coat. Technol. 2024, 487, 130949. [Google Scholar] [CrossRef]
- Smith, T.M.; Thompson, A.C.; Gabb, T.P.; Bowman, C.L.; Kantzos, C.A. Efficient production of a high-performance dispersion strengthened, multi-principal element alloy. Sci. Rep. 2020, 10, 9663. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.P.; Wang, G.J.; Ma, Y.J.; Cao, Z.H.; Meng, X.K. High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scr. Mater. 2019, 162, 281–285. [Google Scholar] [CrossRef]
- Kumar, D. Recent advances in tribology of high entropy alloys: A critical review. Prog. Mater. Sci. 2023, 136, 101106. [Google Scholar] [CrossRef]
- Yang, Y.C.; Ren, Y.J.; Tian, Y.W.; Li, K.Y.; Bai, L.C.; Huang, Q.L.; Shan, Q.; Tian, Y.T.; Wu, H. Microstructure and tribological behaviors of FeCoCrNiMoSix high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2022, 432, 128009. [Google Scholar] [CrossRef]
- Yu, Y.; He, F.; Qiao, Z.H.; Wang, Z.J.; Liu, W.M.; Yang, J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloy Compd. 2019, 775, 1376–1385. [Google Scholar] [CrossRef]
- Wang, Y.X.; Yang, Y.J.; Yang, H.J.; Zhang, M.; Ma, S.G.; Qiao, J.W. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 2018, 210, 233–239. [Google Scholar] [CrossRef]
Fe | Cr | Co | Mn | Si | |
---|---|---|---|---|---|
FeCrCoMn | 25.00 | 25.00 | 25.00 | 25.00 | 0.00 |
FeCrCoMnSi0.3 | 23.26 | 23.26 | 23.26 | 23.26 | 6.98 |
FeCrCoMnSi0.6 | 21.74 | 21.74 | 21.74 | 21.74 | 13.04 |
FeCrCoMnSi0.9 | 20.41 | 20.41 | 20.41 | 20.41 | 18.37 |
FeCrCoMnSi1.0 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, D.; Sun, S.; Zhang, B. Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings. Coatings 2024, 14, 1476. https://doi.org/10.3390/coatings14121476
Zhang S, Jiang D, Sun S, Zhang B. Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings. Coatings. 2024; 14(12):1476. https://doi.org/10.3390/coatings14121476
Chicago/Turabian StyleZhang, Shuling, Di Jiang, Shengdi Sun, and Bo Zhang. 2024. "Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings" Coatings 14, no. 12: 1476. https://doi.org/10.3390/coatings14121476
APA StyleZhang, S., Jiang, D., Sun, S., & Zhang, B. (2024). Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings. Coatings, 14(12), 1476. https://doi.org/10.3390/coatings14121476