Selective CO2 Detection at Room Temperature with Polyaniline/SnO2 Nanowire Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SnO2 NWs
2.3. Preparation of PANI/SnO2 Composites
2.4. Characterization
2.5. Fabrication and Measurement of Gas Sensor
3. Results
3.1. Characterization of PANI/SnO2 Composites
3.2. Gas Sensing Properties
3.3. Discussion and Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazemi, H.; Park, J.; Emadi, A. Advanced micro- and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef]
- Shaik, R.; Kampara, R.; Kumar, A.; Sharma, C.; Kumar, M. Metal oxide nanofibers based chemiresistive H2S gas sensors. Coord. Chem. Rev. 2022, 471, 214752. [Google Scholar] [CrossRef]
- Ghosh, A.; Zhang, C.; Shi, S.; Zhang, H. High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sens. Actuator B Chem. 2019, 301, 126958. [Google Scholar] [CrossRef]
- Hunge, Y.; Yadav, A.; Kulkarni, S.; Mathe, V. A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens. Actuator B Chem. 2018, 274, 1–9. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, Z. Compositing strategies to enhance the performance of chemiresistive CO2 gas sensors. Mater. Sci. Semicond. Process 2020, 107, 104820. [Google Scholar] [CrossRef]
- Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- Zhao, K.; Gu, G.; Zhang, Y.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M.; Cheng, G.; Du, Z. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905. [Google Scholar] [CrossRef]
- Salih, E.; Ayesh, A. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Physica E 2021, 125, 114418. [Google Scholar] [CrossRef]
- Basyooni, M.; Shaban, M.; Sayed, A. Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. 2017, 7, 41716. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Singh, S. Chemiresistive sensor based on Zinc oxide nanoflakes for CO2 detection. ACS Appl. Nano Mater. 2019, 2, 700–706. [Google Scholar] [CrossRef]
- Hasan, D.; Lee, C. Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR. Adv. Sci. 2018, 5, 1700581. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Elgammal, K.; Smith, A.; Östling, M.; Delin, A.; Lemme, A.; Niklaus, F. Humidity and CO2 gas sensing properties of double-layer graphene. Carbon 2018, 127, 576–587. [Google Scholar] [CrossRef]
- Ma, R.; Gan, W.; Zeng, Y.; Feng, S.; Duan, S.; Feng, P.; Peng, X. High-performance gas sensor utilizing g-C3N4/In2O3 composite for low concentration prediction to NO2. Sens. Actuator B Chem. 2024, 414, 135879. [Google Scholar] [CrossRef]
- Ding, Y.; Du, B.; Guo, X.; Dong, Y.; Zhang, M.; Jin, W.; Gao, C.; Peng, D.; He, Y. An ultrasensitive NO2 gas sensor based on a NiO-SnO2 composite with a sub-ppb detection limit at room temperature. Sens. Actuator B Chem. 2024, 414, 135916. [Google Scholar] [CrossRef]
- Han, D.; Liu, Z.; Liu, L.; Li, D.; Chen, Y.; Wang, H.; Zhao, L.; Wang, W.; Sang, S. Room temperature and anti-humidity NH3 detection based on GaN nanorods/Ti3C2Tx MXene composite gas sensor. Sens. Actuator B Chem. 2023, 393, 134319. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, H.; Zhang, Y.; Han, D.; Cheng, Y.; Jian, A.; Sang, S. ZnO/GaN n-n heterojunction porous nanosheets for ppb-level NO2 gas sensors. Sens. Actuator B Chem. 2023, 396, 134629. [Google Scholar] [CrossRef]
- Shuai, Y.; Peng, R.; He, Y.; Liu, X.; Wang, X.; Guo, W. NiO/BiVO4 p-n heterojunction microspheres for conductometric triethylamine gas sensors. Sens. Actuator B Chem. 2023, 384, 133625. [Google Scholar] [CrossRef]
- Pagidi, S.; Pasupuleti, K.; Reddeppa, M.; Ahn, S.; Kim, Y.; Kim, J.; Kim, M.; Lee, S.; Jeon, M. Resistive type NO2 gas sensing in polymer-dispersed liquid crystals with functionalized-carbon nanotubes dopant at room temperature. Sens. Actuator B Chem. 2022, 370, 132482. [Google Scholar] [CrossRef]
- Ma, J.; Fan, H.; Li, Z.; Jia, Y.; Yadav, A.; Dong, G.; Wang, W.; Dong, W.; Wang, S. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens. Actuator B Chem. 2021, 334, 129677. [Google Scholar] [CrossRef]
- Liu, A.; Lv, S.; Jiang, L.; Liu, F.; Zhao, L.; Wang, J.; Hu, X.; Yang, Z.; He, J.; Wang, C.; et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuator B Chem. 2021, 332, 129444. [Google Scholar] [CrossRef]
- Wu, G.; Du, H.; Cha, Y.; Lee, D.; Kim, W.; Nejad, F.; Oh, T.; Zhang, X.; Kim, D. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sens. Actuator B Chem. 2023, 375, 132858. [Google Scholar] [CrossRef]
- Masuda, Y. Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuator B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Q. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sens. Actuator A Phys. 2022, 346, 113845. [Google Scholar] [CrossRef]
- Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Mater. Sci. 2022, 4, 339–350. [Google Scholar] [CrossRef]
- Gasso, S.; Sohal, M.; Mahajan, A. MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sens. Actuator B Chem. 2022, 357, 131427. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, D.; Tang, M.; Zhang, H.; Wang, Z.; Jia, P.; Zhai, J. Amorphous Ag catalytic layer-SnO2 sensitive layer-graphite carbon nitride electron supply layer synergy-enhanced hydrogen gas sensor. Chem. Eng. J. 2024, 495, 153676. [Google Scholar] [CrossRef]
- Talwar, V.; Singh, O.; Singh, R. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuator B Chem. 2014, 191, 279–282. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.; Zhang, D.; Wang, D.; Chen, F.; Guo, J. Fabrication and properties of room temperature ammonia gas sensor based on SnO2 modified WSe2 nanosheets heterojunctions. Appl. Surf. Sci. 2022, 597, 153564. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Li, P.; Shi, J.; Gao, X. Effect of rare earth doping on electronic and gas-sensing properties of SnO2 nanostructures. J. Alloys Compd. 2022, 909, 164687. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Xiao, Y.; Chen, T.; Xiao, X.; Wang, Y. Pt/MoS2/Polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection. ACS Appl. Mater. Interfaces 2023, 15, 9604–9617. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qin, Y.; Bai, Y. Highly response and humidity-resistant gas sensor based on polyaniline-functionalized Bi2MoO6 with UV activation. Electrochim. Acta 2022, 427, 140863. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Zhang, D.; Fan, X.; Jin, Y.; Guo, L. Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sens. Actuator B Chem. 2020, 322, 128615. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Zhou, T.; Liu, L.; Chen, Q.; Gao, B.; Zhang, T. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuator B Chem. 2022, 365, 131928. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Du, H.; Li, X.; Wang, C.; Hou, T. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers. J. Alloys Compd. 2021, 868, 159140. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Hilal, M.; Cai, Z. Core–shell SnO2/NiO p–n heterojunction composite for enhanced triethylamine gas sensitivity and selectivity. J. Mater. Sci.-Mater. Electron. 2024, 35, 1421. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Hilal, M.; Cai, Z. Enhanced acetone gas sensor via TiO2 nanofiber-NiO nanoparticle heterojunction. Solid State Sci. 2024, 156, 107683. [Google Scholar] [CrossRef]
- Li, G.; Hou, J.; Hilal, M.; Kim, H.; Chen, Z.; Cui, Y.; Kim, J.; Cai, Z. Development of high-performance ethanol gas sensors based on La2O3 nanoparticles-embedded porous SnO2 nanofibers. Sensors 2024, 24, 6839. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xue, Q.; Ling, C.; Lu, W.; Ding, D.; Zhu, L.; Li, X. Effective CO2 detection based on LaOCl-doped SnO2 nanofibers: Insight into the role of oxygen in carrier gas. Sens. Actuator B Chem. 2017, 241, 725–734. [Google Scholar] [CrossRef]
- Singh, A.; Singh, S.; Yadav, B. Gigantic enhancement in response of heterostructured CeO2/CdS nanospheres based self-powered CO2 gas sensor: A comparative study. Sens. Actuator B Chem. 2023, 377, 133085. [Google Scholar] [CrossRef]
- Jeong, Y.; Balamurugan, C.; Lee, D. Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens. Actuator B Chem. 2016, 229, 288–296. [Google Scholar] [CrossRef]
- Krishnakumar, T.; Jayaprakash, R.; Prakash, T.; Sathyaraj, D.; Donato, N.; Licoccia, S.; Latino, M.; Stassi, A.; Neri, G. CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology 2011, 22, 325501. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Lokhande, A.; Kim, J.; Lokhande, C. Highly sensitive CO2 sensor based on microrods-like La2O3 thin film electrode. RSC Adv. 2016, 6, 106074–106080. [Google Scholar] [CrossRef]
- Nasirian, S. Enhanced carbon dioxide sensing performance of polyaniline/tin dioxide nanocomposite by ultraviolet light illumination. Appl. Surf. Sci. 2020, 502, 144302. [Google Scholar] [CrossRef]
- Karthik, T.; Martinez, L.; Agarwal, V. Porous silicon ZnO/SnO2 structures for CO2 detection. Appl. Surf. Sci. 2018, 731, 853–863. [Google Scholar] [CrossRef]
- Yadav, A.; Lokhande, A.; Kim, J.; Lokhande, C. Enhanced sensitivity and selectivity of CO2 gas sensor based on modified La2O3 nanorods. Appl. Surf. Sci. 2017, 723, 880–886. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Liu, Z.; Li, L.; Shi, C.; Qin, H.; Hu, J. CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuator B Chem. 2016, 227, 73–84. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, C.; Zhang, G.; Zhang, J.; Zhang, S.; Zeng, D. Porous LaFeO3/SnO2 nanocomposite film for CO2 detection with high sensitivity. Mater. Chem. Phys. 2017, 186, 228–236. [Google Scholar] [CrossRef]
- Kim, M.; Choi, Y.; Bae, J.; Oh, T. Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor. Ceram. Int. 2012, 38, S657–S660. [Google Scholar] [CrossRef]
- Diagne, E.; Lumbreras, M. Elaboration and characterization of tin oxide–lanthanum oxide mixed layers prepared by the electrostatic spray pyrolysis technique. Sens. Actuator B Chem. 2001, 78, 98–105. [Google Scholar] [CrossRef]
- DMello, M.; Sundaram, N.; Kalidindi, S. Assembly of ZIF-67 metal–organic framework over tin oxide nanoparticles for synergistic chemiresistive CO2 gas sensing. Chem. Eur. J. 2018, 24, 9220–9223. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, j.; Park, h.; Kim, K. CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide. Sens. Actuator B Chem. 2000, 62, 61–66. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuator B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, Y.; Zheng, L.; Yang, C.; Pinna, N.; Liu, X.; Zhang, J. MoS2 Van Der Waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 2020, 30, 2000435. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuator A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Li, M.; Chang, J.; Deng, Z.; Mi, L.; Kumar, M.; Wang, S.; He, Y.; Meng, G. Discriminating gas molecules at room temperature by UV light modulation (ULM) of nonselective metal oxide sensors. Sens. Actuator B Chem. 2023, 378, 133115. [Google Scholar] [CrossRef]
Material | Sensor Response | Response Time (s) | Recovery Time (s) | Concentration (ppm) | Operating Temperature (°C) | Concentration (ppm) |
---|---|---|---|---|---|---|
LaOCl/SnO2 | 3.7 1 | 24 | 92 | 1000 | 300 | [38] |
CeO2/CdS | 3.62 1 | 12 | 20 | 1000 | RT | [39] |
La/ZnO | 65 2 | 90 | 38 | 5000 | 400 | [40] |
CdO | 1.7 2 | 200 | 300 | 5000 | 250 | [41] |
La2O3 | 1.92 1 | 50 | 73 | 350 | 250 | [42] |
SnO2/PANI | 47.4 2 | 35.1 | 43.2 | 5000 | RT | [43] |
ZnO/SnO2 | 19 2 | 65 | 90 | 150,000 | 300 | [44] |
La2O3@Pd | 2.8 1 | 80 | 50 | 400 | 250 | [45] |
SnO2 | 1.24 1 | 250 | 4 | 2000 | 240 | [46] |
SnO2/LaFeO3 | 2.72 1 | 20 | - | 4000 | 250 | [47] |
La2O3/SnO2 | 1.52 1 | - | - | 1000 | 400 | [48] |
La2O3/SnO2 | 1.75 1 | - | - | 500 | 300 | [49] |
SnO2@ZIF-67 | 16.5 2 | 25 | 96 | 5000 | 205 | [50] |
La2O3/SnO2 | 1.59 1 | - | - | 2000 | 400 | [51] |
SnO2/PANI | 26 2 | 293 | 1510 | 1000 | RT | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Hilal, M.; Kim, H.; Lee, J.; Chen, Z.; Li, B.; Cui, Y.; Hou, J.; Cai, Z. Selective CO2 Detection at Room Temperature with Polyaniline/SnO2 Nanowire Composites. Coatings 2024, 14, 1590. https://doi.org/10.3390/coatings14121590
Li G, Hilal M, Kim H, Lee J, Chen Z, Li B, Cui Y, Hou J, Cai Z. Selective CO2 Detection at Room Temperature with Polyaniline/SnO2 Nanowire Composites. Coatings. 2024; 14(12):1590. https://doi.org/10.3390/coatings14121590
Chicago/Turabian StyleLi, Gen, Muhammad Hilal, Hyojung Kim, Jiyeon Lee, Zhiyong Chen, Bin Li, Yunhao Cui, Jian Hou, and Zhicheng Cai. 2024. "Selective CO2 Detection at Room Temperature with Polyaniline/SnO2 Nanowire Composites" Coatings 14, no. 12: 1590. https://doi.org/10.3390/coatings14121590
APA StyleLi, G., Hilal, M., Kim, H., Lee, J., Chen, Z., Li, B., Cui, Y., Hou, J., & Cai, Z. (2024). Selective CO2 Detection at Room Temperature with Polyaniline/SnO2 Nanowire Composites. Coatings, 14(12), 1590. https://doi.org/10.3390/coatings14121590