Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Optical Microscopy
3.1.1. Condition 1
3.1.2. Condition 2
3.2. Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM/EDS)
3.3. X-Ray Diffraction (XRD)
3.4. Secondary Dendritic Spacing (SDS), Dilution and Phase Quantification
3.5. Hardness and Microhardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, F.C. Joining: Understanding the Basics; ASM International: Russel Township, ON, Canada, 2011; ISBN 978-1-61503-825-1. [Google Scholar]
- Silva, R.D.S.; Demarque, R.; da Silva, L.M.; de Castro, J.A. Analysis of Dissimilar Welding Joint between Inconel 718 and AISI 316L by GTAW Multipass Process. Soldag. E Insp. 2022, 27, e2709. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, W.; Feng, J.; Lu, G.; Zhu, R.; Li, Y. A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper. Metals 2022, 12, 675. [Google Scholar] [CrossRef]
- Wang, M.; Lu, Y.; Zhang, G.; Cui, H.; Xu, D.; Wei, N.; Li, T. A Novel High-Entropy Alloy Composite Coating with Core-Shell Structures Prepared by Plasma Cladding. Vacuum 2021, 184, 109905. [Google Scholar] [CrossRef]
- Jia, X.; Yin, G.; Meng, Y.; Chen, S.; Yu, G.; Yang, J.; Huang, J.; Yu, T.; Zhou, L.; Chen, S. Plasma Transferred Arc Powder Surfacing for Titanium-Clad Steel Plate. J. Therm. Spray Technol. 2023, 32, 1611–1622. [Google Scholar] [CrossRef]
- Gatto, A.; Bassoli, E.; Fornari, M. Plasma Transferred Arc Deposition of Powdered High Performances Alloys: Process Parameters Optimisation as a Function of Alloy and Geometrical Configuration. Surf. Coat. Technol. 2004, 187, 265–271. [Google Scholar] [CrossRef]
- Dak, G.; Pandey, C. A Critical Review on Dissimilar Welds Joint between Martensitic and Austenitic Steel for Power Plant Application. J. Manuf. Process. 2020, 58, 377–406. [Google Scholar] [CrossRef]
- Xie, W.; Yang, C. Microstructure, Mechanical Properties and Corrosion Behavior of Austenitic Stainless Steel Sheet Joints Welded by Gas Tungsten Arc (GTA) and Ultrasonic–Wave–Assisted Gas Tungsten Pulsed Arc (U–GTPA). Arch. Civ. Mech. Eng. 2020, 20, 43. [Google Scholar] [CrossRef]
- Barati Mahyari, M.; Vaseghi, M.; Sameezadeh, M.; Dehrooyeh, S. Experimental-Theoretical Study of a Novel Approach for Dissimilar Welding of Ferritic Steels in Power Plants: An Investigation of Morphology-Composition-Property. Eng. Fail. Anal. 2024, 157, 107917. [Google Scholar] [CrossRef]
- Davis, J.R. Nickel, Cobalt, and Their Alloys; ASM International: Russel Township, OH, USA, 2000; ISBN 978-0-87170-685-0. [Google Scholar]
- Paes, R.M.G.; Scheid, A. Effect of Deposition Current on Microstructure and Properties of CoCrWC Alloy PTA Coatings. Soldag. Inspeção 2014, 19, 247–254. [Google Scholar] [CrossRef]
- Petchsang, S.; Phung-on, I.; Poopat, B. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing. J. Mater. Eng. Perform. 2016, 25, 5424–5439. [Google Scholar] [CrossRef]
- Giudice, F.; Missori, S.; Scolaro, C.; Sili, A. A Review on Fusion Welding of Dissimilar Ferritic/Austenitic Steels: Processing and Weld Zone Metallurgy. J. Manuf. Mater. Process. 2024, 8, 96. [Google Scholar] [CrossRef]
- Haden, C.V.; Zeng, G.; Carter, F.M.; Ruhl, C.; Krick, B.A.; Harlow, D.G. Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties. Addit. Manuf. 2017, 16, 115–123. [Google Scholar] [CrossRef]
- Sabzi, M.; Dezfuli, S.M. Drastic Improvement in Mechanical Properties and Weldability of 316L Stainless Steel Weld Joints by Using Electromagnetic Vibration during GTAW Process. J. Manuf. Process. 2018, 33, 74–85. [Google Scholar] [CrossRef]
- Manjunath, B.N.; Jayaprakash, P.; Mishra, A.; Karthik, H.S.; Arulkirubakaran, D.; Kiran, D.V.; Venkaiah, N. Joining Dissimilar Metals Using Cold Metal Transfer Process: A Review. Weld. World 2024, 68, 579–591. [Google Scholar] [CrossRef]
- Ramkumar, T.; Selvakumar, M.; Narayanasamy, P.; Begam, A.A.; Mathavan, P.; Raj, A.A. Studies on the Structural Property, Mechanical Relationships and Corrosion Behaviour of Inconel 718 and SS 316L Dissimilar Joints by TIG Welding without Using Activated Flux. J. Manuf. Process. 2017, 30, 290–298. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C. Comparison of Measurement Methods for Secondary Dendrite Arm Spacing. Metallogr. Microstruct. Anal. 2017, 6, 89–94. [Google Scholar] [CrossRef]
- ASTM E562-11; Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. ASTM International: Russel Township, ON, Canada, 2011.
- Juárez-García, J.M.; Yañez-Limón, J.M.; Manzano-Ramírez, A.; Rojas-Chávez, H.; Rodríguez-López, A.; Mercader-Trejo, F.; Herrera-Basurto, R. Characterization and Quantification of the Phases Concentration of Cu60–Zn40 Alloy as Candidate Reference Material. Metallogr. Microstruct. Anal. 2017, 6, 164–170. [Google Scholar] [CrossRef]
- Yaedu, A.E.; D’Oliveira, A.S.C.M. Cobalt Based Alloy PTA Hardfacing on Different Substrate Steels. Mater. Sci. Technol. 2005, 21, 459–466. [Google Scholar] [CrossRef]
- ASTM E18-24; Standard Test Methods for Rockwell Hardness of Metallic Materials. ASM International: Russel Township, ON, Canada, 2024.
- Silva, C.C.; Afonso, C.R.M.; Ramirez, A.J.; Motta, M.F.; de Miranda, H.C.; Farias, J.P. Aspectos Metaliirgicos de Revestimentos Dissimilares Com a Superliga a Base de Niquel Inconel 625. Soldag. E Insp. 2012, 17, 251–263. [Google Scholar] [CrossRef]
- Da Silva, W.C.; Do Nascimento, R.M.; Castro, N.A.; Silva, C.L.M. Microstructural Analysis of Partially Diluted Zones in Dissimilar Cladding: EBSD Insights on AWS E 309L Alloy via MIG Process in Single- and Double-Layer Depositions on ASTM A36 Steel. Mater. Res. 2024, 27, 2–7. [Google Scholar] [CrossRef]
- Alvarães, C.P.; Madalena, F.C.A.; De Souza, L.F.G.; Jorge, J.C.F.; Araújo, L.S.; Mendes, M.C. Performance of the INCONEL 625 Alloy Weld Overlay Obtained by FCAW Process. Rev. Mater. 2019, 24, e12290. [Google Scholar] [CrossRef]
- Falqueto, L.E.; Butkus, D.J.; De Mello, J.D.B.; Bozzi, A.C.; Scandian, C. Sliding Wear of Cobalt-Based Alloys Used in Rolling Seamless Tubes. Wear 2017, 376–377, 1739–1746. [Google Scholar] [CrossRef]
- Kusmoko, A.; Dunne, D.; Li, H.; Nolan, D. Deposition of Stellite 6 on Nickel Superalloy and Mild Steel Substrates with Laser Cladding. Int. J. Adv. Mater. Manuf. Charact. 2013, 3, 469–473. [Google Scholar] [CrossRef]
- Shin, J.C.; Doh, J.M.; Yoon, J.K.; Lee, D.Y.; Kim, J.S. Effect of Molybdenum on the Microstructure and Wear Resistance of Cobalt-Base Stellite Hardfacing Alloys. Surf. Coat. Technol. 2003, 166, 117–126. [Google Scholar] [CrossRef]
- Reda, Y.; El-Shamy, A.M.; Eessaa, A.K. Effect of Hydrogen Embrittlement on the Microstructures of Electroplated Steel Alloy 4130. Ain Shams Eng. J. 2018, 9, 2973–2982. [Google Scholar] [CrossRef]
- Lee, C.S.; Chandel, R.S.; Seow, H.P. Effect of Welding Parameters on the Size of Heat Affected Zone of Submerged Arc Welding. Mater. Manuf. Process. 2000, 15, 649–666. [Google Scholar] [CrossRef]
- Rodrigues, D.M.; Menezes, L.F.; Loureiro, A. The Influence of the HAZ Softening on the Mechanical Behaviour of Welded Joints Containing Cracks in the Weld Metal. Eng. Fract. Mech. 2004, 71, 2053–2064. [Google Scholar] [CrossRef]
- Li, W.; Liou, F.; Newkirk, J.; Brown Taminger, K.M.; Seufzer, W.J. Investigation on Ti6Al4V-V-Cr-Fe-SS316 Multi-Layers Metallic Structure Fabricated by Laser 3D Printing. Sci. Rep. 2017, 7, 7977. [Google Scholar] [CrossRef] [PubMed]
- Doody, T. Intermediate Mixed Zones in Dissimilar Metal Welds for Sour Service. Weld. J. 1992, 71, 55–60. [Google Scholar]
- Asle Zaeem, M.; Hogan†, L.M. Dendritic Solidification of Crystals. In Encyclopedia of Materials: Science and Technology; Pergamon Press: Oxford, UK, 2001; Volume 1, pp. 1913–1918. [Google Scholar]
- Davis, A.E.; Wainwright, J.; Sahu, V.K.; Dreelan, D.; Chen, X.; Ding, J.; Flint, T.; Williams, S.; Prangnell, P.B. Achieving a Columnar-to-Equiaxed Transition Through Dendrite Twinning in High Deposition Rate Additively Manufactured Titanium Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2024, 55, 1765–1787. [Google Scholar] [CrossRef]
- Ao, X.; Xia, H.; Liu, J.; He, Q.; Lin, S. A Numerical Study of Dendrite Growth and Microstructure Transition in a Non-Equilibrium Solidification. J. Phys. Conf. Ser. 2021, 1939, 012018. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, S.; Xia, B.; Zhu, H. The Dominant Role of Recrystallization and Grain Growth Behaviors in the Simulated Welding Heat-Affected Zone of High-Mn Steel. Materials 2024, 17, 2218. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.V.; Modenesi, P.J.; Bracarense, A.Q. Soldagem: Fundamentos e Tecnologia, 3rd ed.; UFMG: Belo Horizonte, Brazil, 2009; ISBN 978-8570417480. [Google Scholar]
- Hou, Y.; Zhang, W.; Yu, Z.; Li, S. Selection of Tool Materials and Surface Treatments for Improved Galling Performance in Sheet Metal Forming. Int. J. Adv. Manuf. Technol. 2009, 43, 1010–1017. [Google Scholar] [CrossRef]
- Dewang, Y.; Sharma, V. Sheet Metal Shrink Flanging Process: A Critical Review of Current Scenario and Future Prospects. Mater. Manuf. Process. 2023, 38, 629–658. [Google Scholar] [CrossRef]
- Xu, X.; van der Zwaag, S.; Xu, W. A Novel Multi-Pass Dual-Indenter Scratch Test to Unravel Abrasion Damage Formation in Construction Steels. Wear 2015, 322–323, 51–60. [Google Scholar] [CrossRef]
- Yoon, B.H.; Lee, C.H.; Kim, H.J. Effect of Dilution on Wear Performance of Plasma Transferred Arc Deposited Layers. ISIJ Int. 2017, 57, 913–920. [Google Scholar] [CrossRef]
- Antoszczyszyn, T.J.; Paes, R.M.G.; de Oliveira, A.S.C.M.; Scheid, A. Impact of Dilution on the Microstructure and Properties of Ni-Based 625 Alloy Coatings. Soldag. Inspeção 2014, 19, 134–144. [Google Scholar] [CrossRef]
- Huang, S.; Wang, T.; Miao, J.; Chen, X.; Zhang, G.; Chen, B.; Zhou, B. Microstructure and High-Temperature Mechanical Properties of a Superalloy Joint Deposited with CoCrMo and CoCrW Welding Wires. Coatings 2024, 14, 892. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation-Hardening of Metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Motallebzadeh, A.; Atar, E.; Cimenoglu, H. Sliding Wear Characteristics of Molybdenum Containing Stellite 12 Coating at Elevated Temperatures. Tribol. Int. 2015, 91, 40–47. [Google Scholar] [CrossRef]
- Deuis, R.L.; Yellup, J.M.; Subramanian, C. Metal-Matrix Composite Coatings by PTA Surfacing. Compos. Sci. Technol. 1998, 58, 299–309. [Google Scholar] [CrossRef]
- Durejko, T.; Łazińska, M. Characterization of Cobalt-Based Stellite 6 Alloy Coating Fabricated by Laser-Engineered Net Shaping (LENS). Materials 2021, 14, 7442. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wang, X.; Chen, C.; Zhou, D.; Xu, P.; Zhao, X. Dissimilar Welding and Joining of Cemented Carbides. Metals 2019, 9, 1161. [Google Scholar] [CrossRef]
- Marconi, M.; Marconi, B. Powder Plasma Arc Welding of Thick Walled Pipes. In Welding World; International Institute of Welding: Genoa, Italy, 2005; pp. 249–264. [Google Scholar]
- Gabriel Paes, R.M.; Martinazzi, D.; Falcade, T.; Scheid, A. Effect of Bead Overlapping on the Microstructure and Mechanical Properties of CoCrWC Alloy Coatings. Mater. Res. 2018, 21, 20180274. [Google Scholar] [CrossRef]
- Antony, K.C. Wear-Resistant Cobalt-Base Alloys. JOM 1983, 35, 52–60. [Google Scholar] [CrossRef]
- D’Oliveira, A.S.C.M.; Tigrinho, J.J.; Takeyama, R.R. Coatings Enrichment by Carbide Dissolution. Surf. Coat. Technol. 2008, 202, 4660–4665. [Google Scholar] [CrossRef]
- Deloro. Stellite 6 Alloy: Technical Data Sheet; Deloro Coatings S.R.L.: Belusco, Italy, 2008; p. DS01–21708(S R0808). [Google Scholar]
- Ma, S.; Li, B.; Ma, Y.; Zhang, P.; Xu, P. Effect of Brazing Filler Metals and Welding Parameters on Laser Welding-Brazing Joints of WC-Co to S1045. Metals 2022, 12, 1780. [Google Scholar] [CrossRef]
- Blau, P.J. Elevated-Temperature Tribology of Metallic Materials. Tribol. Int. 2010, 43, 1203–1208. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Zhou, N.; Zhang, Y.; Qin, Q.; Wang, D.; Jiao, J.; Tang, G.; Li, Y. Study on Microstructure of Fiber Laser Welding of CoCrCuFeNi High Entropy Alloy. Materials 2022, 15, 8777. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, I.; Ocelík, V.; De Hosson, J.T.M. Effects of the Alloy Composition on Phase Constitution and Properties of Laser Deposited Ni-Cr-B-Si Coatings. Phys. Procedia 2013, 41, 302–311. [Google Scholar] [CrossRef]
Material | C | Ni | Cr | Mo | W | Mn | Si | P | S | Fe | Co |
---|---|---|---|---|---|---|---|---|---|---|---|
AISI 4130 | 0.30 | 0.50 | 0.80 | 0.15 | - | 0.60 | 0.15 | 0.04 | 0.04 | Bal. 1 | - |
Stellite 6 | 1.00 | 3.00 | 29.00 | 1.50 | 4.50 | 1.00 | 1.50 | - | - | 3.00 | Bal. 1 |
Welding Condition | Current (A) | Layer Thickness (mm) | Granulometry (μm) |
---|---|---|---|
1 | 90 | 2 | 53–180 |
2 | 109 | 2 | 53–180 |
Element | Point | Average | |||
---|---|---|---|---|---|
367 | 368 | 369 | 380 | ||
Co (%) | 60.10 | 60.40 | 61.10 | 60.30 | 60.48 ± 0.43 |
Cr (%) | 23.20 | 23.10 | 23.00 | 22.80 | 23.03 ± 0.17 |
C (%) | 9.60 | 9.30 | 9.20 | 10.00 | 9.53 ± 0.36 |
W (%) | 3.10 | 2.60 | 2.40 | 2.90 | 2.75 ± 0.31 |
Fe (%) | 2.30 | 2.70 | 2.50 | 2.40 | 2.48 ± 0.17 |
Si (%) | 1.20 | 1.40 | 1.30 | 1.40 | 1.33 ± 0.10 |
Mo (%) | 0.40 | 0.40 | 0.40 | 0.30 | 0.38 ± 0.05 |
Element | Point | Average | |||
---|---|---|---|---|---|
352 | 354 | 359 | 360 | ||
Co (%) | 52.30 | 52.30 | 52.30 | 52.40 | 52.33 ± 0.05 |
Cr (%) | 21.00 | 20.90 | 21.00 | 20.90 | 20.95 ± 0.06 |
Fe (%) | 14.00 | 14.40 | 14.30 | 14.30 | 14.25 ± 0.17 |
C (%) | 8.50 | 8.40 | 7.80 | 8.10 | 8.20 ± 0.32 |
W (%) | 2.50 | 2.50 | 2.60 | 2.80 | 2.60 ± 0.14 |
Si (%) | 1.20 | 1.10 | 1.40 | 1.20 | 1.23 ± 0.13 |
Mo (%) | 0.50 | 0.40 | 0.50 | 0.40 | 0.45 ± 0.06 |
Welding Condition | Dilution (%) |
---|---|
1 | 4.6 |
2 | 16.7 |
Welding Condition | Hardness (HRC) | Average | ||||
---|---|---|---|---|---|---|
1 | 45 | 42 | 39 | 484 | 48 | 44 ± 4 |
2 | 35 | 34 | 35 | 36 | 38 | 36 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves Júnior, E.R.; de Oliveira, B.F.; Terrones, L.A.H.; Simonassi, N.T.; Monteiro, S.N. Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel. Coatings 2024, 14, 1591. https://doi.org/10.3390/coatings14121591
Gonçalves Júnior ER, de Oliveira BF, Terrones LAH, Simonassi NT, Monteiro SN. Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel. Coatings. 2024; 14(12):1591. https://doi.org/10.3390/coatings14121591
Chicago/Turabian StyleGonçalves Júnior, Elias Rocha, Bárbara Ferreira de Oliveira, Luis Augusto Hernandez Terrones, Noan Tonini Simonassi, and Sergio Neves Monteiro. 2024. "Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel" Coatings 14, no. 12: 1591. https://doi.org/10.3390/coatings14121591
APA StyleGonçalves Júnior, E. R., de Oliveira, B. F., Terrones, L. A. H., Simonassi, N. T., & Monteiro, S. N. (2024). Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel. Coatings, 14(12), 1591. https://doi.org/10.3390/coatings14121591