Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions
Abstract
:1. Introduction
2. Introduction and Structural Characteristics of HEAs
2.1. Introduction to HEAs
2.2. Chemical Disorder Structure of HEAs
3. Low-Temperature Properties of HEAs
3.1. FCC-Phase HEAs
3.1.1. CoCrFeMnNi HEA
3.1.2. Equimolar CoCrFe-Based HEAs
3.1.3. Non-Equimolar HEAs
3.2. BCC-Phase HEAs
3.3. Multi-Structural HEAs
4. High-Temperature Properties of HEAs
4.1. Transition Metal HEAs
4.1.1. Single-Phase HEA
4.1.2. Multi-Phase HEA
4.2. Refractory HEAs
4.2.1. Mechanical Properties
4.2.2. High-Temperature Thermal Stability
4.2.3. High-Temperature Oxidation Resistance
5. Summary and Outlook
- The specific impact of multiple deformation mechanisms on alloy performance under extreme environments.
- 2.
- Mechanisms of toughening and plasticizing high-strength HEAs at high and low temperatures.
- 3.
- Development and application of low-cost iron-based HEAs.
- 4.
- Dynamic mechanical behavior and applications of HEAs at high and low temperatures.
Author Contributions
Funding
Conflicts of Interest
References
- Grilli, M.L.; Valerini, D.; Slobozeanu, A.E.; Postolnyi, B.O.; Balos, S.; Rizzo, A.; Piticescu, R.R. Critical Raw Materials Saving by Protective Coatings under Extreme Conditions: A Review of Last Trends in Alloys and Coatings for Aerospace Engine Applications. Materials 2021, 14, 1656. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, Y.A.; Kolodyazhnyy, M.Y.; Surova, V.A. Creation of High-Temperature Heat-Resistant Alloys Based on Refractory Matrices and Natural Composites. Inorg. Mater. Appl. Res. 2021, 12, 1157–1163. [Google Scholar] [CrossRef]
- Martin, J.H.; Ashby, D.S.; Schaedler, T.A. Thin-walled high temperature alloy structures fabricated from additively manufactured polymer templates. Mater. Des. 2017, 120, 291–297. [Google Scholar] [CrossRef]
- Krämer, A.; Lung, D.; Klocke, F. High Performance Cutting of Aircraft and Turbine Components. In Proceedings of the 4th Manufacturing Engineering Society International Conference (MESIC 2011), Cadiz, Spain, 21–23 September 2011. [Google Scholar]
- Promakhov, V.; Matveev, A.; Schulz, N.; Dronov, P.; Zhukov, A.; Vorozhtsov, A. Structure, Properties and Phase Composition of Composite Materials Based on the System NiTi-TiB2. Materials 2022, 15, 5327. [Google Scholar] [CrossRef]
- Zhou, Q.; Itoh, G.; Niiromi, M. Mechanical properties and high temperature deformation of beta titanium alloys. In Proceedings of the 2006 BIMW: 2006 Beijing International Materials Week, Beijing, China, 25–30 June 2006. [Google Scholar]
- Zhang, Q.H.; Chang, Y.J.; Gu, L.; Luo, Y.S.; Ge, B.H. Study of microstructure of nickel-based superalloys at high temperatures. Scr. Mater. 2017, 126, 55–57. [Google Scholar] [CrossRef]
- Kablov, E.N.; Karpov, Y.A.; Titov, V.I.; Karfidova, K.E.; Kudryavtseva, G.S.; Gundobin, N.V. Rhenium and ruthenium determination in nanostructured high-temperature alloys for aerospace engineering. Inorg. Mater. 2015, 51, 1363–1369. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, X.; Jiao, H.; Ni, T.; Zhao, Y.; Wei, H. Development Strategy of Deep-Sea Exploration and Residence Equipment. Strateg. Study CAE 2024, 26, 15–22. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Jiao, P.C.; Lin, Y.T. Emerging Deep-Sea Smart Composites: Advent, Performance, and Future Trends. Materials 2022, 15, 6469. [Google Scholar] [CrossRef]
- Santos BM, O.; Dias FJ, M.; Trillaud, F.; Sotelo, G.G.; de Andrade, R. A Review of Technology Readiness Levels for Superconducting Electric Machinery. Energies 2023, 16, 5955. [Google Scholar] [CrossRef]
- Balint, T.S.; Cutts, J.A.; Kolawa, E.A.; Peterson, C.E. Extreme environment technologies for space and terrestrial applications. In Space Exploration Technologies; SPIE: Orlando, FL, USA, 2008. [Google Scholar]
- Patterson, R.L.; Hammoud, A.; Dickman, J.E.; Gerber, S.; Elbuluk, M.; Overton, E. Electronics for deep space cryogenic applications. J. Phys. IV 2002, 12, 207–210. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Jovičević-Klug, M.; Podgornik, B. Unravelling the Role of Nitrogen in Surface Chemistry and Oxidation Evolution of Deep Cryogenic Treated High-Alloyed Ferrous Alloy. Coatings 2022, 12, 213. [Google Scholar] [CrossRef]
- Wu, P.F.; Gan, K.F.; Yan, D.S.; Li, Z.M. The Temperature Dependence of Deformation Behaviors in High-Entropy Alloys: A Review. Metals 2021, 11, 2005. [Google Scholar] [CrossRef]
- Pillai, R.; Ren, Q.; Su, Y.F.; Kurfess, R.; Feldhausen, T.; Nag, S. Leveraging Additive Manufacturing to Fabricate High Temperature Alloys with Co-Designed Mechanical Properties and Environmental Resistance. J. Eng. Gas Turbines Power-Trans. ASME 2024, 146, 061018. [Google Scholar] [CrossRef]
- Rahman SS, U.; Wieland, H.U.; Burstein, V.; Hubner, M. High performance all metal telescope for satellite based laser communication terminals. In Sensors and Systems for Space Applications XV; SPIE: Orlando, FL, USA, 2022. [Google Scholar]
- Li, Y.; Jiang, X.; Wang, X.; Leng, Y. Integration of hardness and toughness in (CuNiTiNbCr)Nx high entropy films through nitrogen-induced nanocomposite structure. Scr. Mater. 2024, 238, 115763. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xue, S.B.; Long, W.M.; Wang, B.; Wang, J.H.; Zhang, P. Effects of Extreme Thermal Shock on Microstructure and Mechanical Properties of Au-12Ge/Au/Ni/Cu Solder Joint. Metals 2020, 10, 1373. [Google Scholar] [CrossRef]
- Dreyer, C.B.; Zacny, K.; Steele, J.P.; Schwendeman, J.R.; Paulsen, G.; Andersen, R.C.; Skok, J. Development of a thin section device for space exploration: Overview and system performance estimates. Adv. Space Res. 2013, 51, 1659–1673. [Google Scholar] [CrossRef]
- Yu, Z.L.; Xin, R.L.; Xu, Z.Z.; Zhu, Y.N.; Zhang, X.L.; Hao, S.J.; Zhang, Z.H.; Liang, P. Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing. Chin. J. Mech. Eng. 2023, 36, 104. [Google Scholar] [CrossRef]
- Singh, H.; Khosla, H.; Sidhu, T.S.; Kalsi, S.B.S.; Karthikeyan, J. Characteristic study of N07718 superalloy surface prepared by cold spray. Mater. Manuf. Process. 2017, 33, 140–148. [Google Scholar] [CrossRef]
- Xu, K.; Yin, Y.X.; Chen, C. Research and application progress of welding technology under extreme conditions. Arch. Civ. Mech. Eng. 2024, 24, 182. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P.C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting. Int. J. Fatigue 2019, 125, 479–490. [Google Scholar] [CrossRef]
- Wu, S.; Tang, Y.N.; Gu, J.; Li, R.T.; Liang, Y.; Liu, P.L.; Wang, H.X.; An, C.H.; Deng, Q.B.; Zhao, L.B.; et al. Controllable preparation of metal-based lubrication coatings in extreme environmental applications. Mater. Des. 2024, 241, 112922. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.Y.; Gong, S.K.; Xu, H.B.; Guo, H.B. High-temperature oxidation resistance of Si-coated C/SiC composites. Rare Met. 2024, 43, 4566–4572. [Google Scholar] [CrossRef]
- Li, Z.W.; Gao, W.; Kwok, P.M.; Li, S.; He, Y.D. Electro-spark deposition coatings for high temperature oxidation resistance. High Temp. Mater. Process. 2000, 19, 443–458. [Google Scholar] [CrossRef]
- Dudziak, T.; Datta, P.K.; Mayrhofer, P.H.; Rovere, F. High Temperature Oxidation Resistance of CrAlYN-Coated Ti45Al8Nb. Oxid. Met. 2011, 75, 359–376. [Google Scholar] [CrossRef]
- Ouyang, T.Y.; Fang, X.W.; Zhang, Y.; Liu, D.W.; Wang, Y.; Feng, S.J.; Zhou, T.; Cai, S.Z.; Suo, J.P. Enhancement of high temperature oxidation resistance and spallation resistance of SiC-self-healing thermal barrier coatings. Surf. Coat. Technol. 2016, 286, 365–375. [Google Scholar] [CrossRef]
- Feng, Y.; Dong, T.S.; Li, G.L.; Wang, R.; Zhao, X.W.; Liu, Q. High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings. J. Alloys Compd. 2020, 828, 154266. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Jiang, H.T.; Tian, S.W.; Xu, W.; Wang, T.X.; Zhang, S.Y.; Zeng, S.W.; Luo, W.; Zhang, Y. High temperature oxidation resistance of TNM alloy coated with/without 8YSZ/NiCoCrAlY thermal barrier coatings. Appl. Surf. Sci. 2023, 611, 155704. [Google Scholar] [CrossRef]
- Romero, R.; Domínguez, A.; López-Escalante, M.; Martín, F.; Romero-Gomez, P.; Palanco, S.; Leinen, D. Silver zirconium oxide cermet coatings spray deposited onto galvanized steel sheet for low temperature solar applications. Ceram. Int. 2023, 49, 33643–33651. [Google Scholar] [CrossRef]
- Choi, J.J.; Choi, J.H.; Park, D.S. Application of Low Temperature Ceramic Coating Process for SOFC Electrolyte and Electrode Fabrication. ECS Trans. 2013, 57, 657. [Google Scholar] [CrossRef]
- Jiang, K.; Qu, Y.D.; You, J.H.; Li, R.D.; Xiang, Q.C.; Zhou, Y.X. Influence of Cr element on impact fracture process of ductile Ni-resistant alloyed iron at low temperature. China Foundry 2016, 13, 42–46. [Google Scholar] [CrossRef]
- Ekabote, N.; Kodancha, K.G.; Khan, T.M.Y.; Badruddin, I.A. Effect of Strain Rate and Temperature on Tensile and Fracture Performance of AA2050-T84 Alloy. Materials 2022, 15, 1590. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Zhang, H.; Sha, J.B. Effect of Vacuum Induction Melting Technology on Mechanical Properties of Nb-16Si-22Ti-2Al-2Hf-17Cr Alloy. Int. J. Mod. Phys. B 2010, 24, 2940–2945. [Google Scholar] [CrossRef]
- Nedashkovskii, K.I.; Zheleznyak, O.N.; Gromyko, B.M.; Kozykov, B.A.; Mikhalev, I.A. Effect of low temperatures on Mechanical and physical properties of high-strength nickel alloy ÉK61-ID and stainless maraging steel ÉK49-VD. Met. Sci. Heat Treat. 2003, 45, 233–236. [Google Scholar] [CrossRef]
- Liu, D.K.; Yang, J.; Zhang, Y.H. Toughness and fracture mechanism at low temperature of offshore engineering steel at different welding heat inputs. Metall. Res. Technol. 2022, 119, 405. [Google Scholar] [CrossRef]
- Yao, C.G.; Lv, H.J.; Yi, D.Q.; Meng, S.; Xiao, L.R.; Wang, B. Microstructures and Mechanical Properties of Inconel 718 Alloy at Ultralow Temperatures. J. Mater. Eng. Perform. 2018, 27, 2060–2069. [Google Scholar] [CrossRef]
- Rao, B.C.; Srinivas, M.; Kamat, S. Effect of temperature on fracture toughness of Timetal 834 titanium alloy under mode I and mixed mode I-III loading. Met. Mater. Trans. A 2008, 39, 1340–1349. [Google Scholar] [CrossRef]
- Clinton, J.A.; Morrison, R.L.; Carter, J.L.W. Effects of Changes in Test Temperature on Tensile Properties and Notched Vs Fatigue Precracked Toughness of a Zr-Based BMG Composite. Metall. Mater. Trans. A 2017, 48, 3220–3230. [Google Scholar] [CrossRef]
- Qu, W.Q.; Song, M.Y.; Yao, J.S.; Zhao, H.Y. Effect of temperature and heat treatment status on the ductile fracture toughness of 2219 aluminum alloy. In Materials Modeling, Simulation, and Characterization; Trans Tech Publications: Zurich, Switzerland, 2011. [Google Scholar]
- Li, D.; Meng, Z.C.; Shen, Y.Y.; Zhang, J.H.; Hu, M.; Qiu, J.K.; Li, S.J. Study of low-temperature impact deformation behavior of Ti-6Al-4V alloy. Vacuum 2024, 222, 113066. [Google Scholar] [CrossRef]
- Srinivasan, V.S.; Ibanez, A.R.; Saxena, A. Modeling of creep crack growth and fracture toughness behaviour of directionally solidified GTD 111 superalloy. Trans. Indian Inst. Met. 2010, 63, 453–456. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, K.; Lu, P.; Liu, S.; Lu, S.; Liu, Q.; Cui, B. Quasi-static compressive fracture behavior of three-period minimum surface Al2O3/Al composites fabricated by stereolithography. J. Mater. Res. Technol. 2024, 30, 4950–4960. [Google Scholar] [CrossRef]
- Wu, Y.S.; Qin, X.Z.; Wang, C.S.; Zhou, L.Z. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure. J. Mater. Sci. Technol. 2021, 60, 61–69. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Inoue, T.; Suzuki, T. Creep rupture strength of V-modified 2 1/4Cr-1Mo steel. Int. J. Press. Vessel. Pip. 2004, 81, 191–197. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, L.B.; Jiang, F.; Cai, H.P.; Sun, J. Microstructural evolution and mechanical properties of a nickel-based superalloy through long-term service. Mater. Sci. Eng. A 2016, 656, 184–189. [Google Scholar] [CrossRef]
- Li, H.F.; Ye, F.; Zhao, J.; Cao, T.S.; Xu, F.H.; Xu, Q.S.; Wang, Y.; Cheng, C.Q.; Min, X.H. Grain boundary migration-induced directional coarsening of the γ′ phase in advanced ultra-supercritical superalloy. Mater. Sci. Eng. A 2018, 714, 172–178. [Google Scholar] [CrossRef]
- van Dalen, M.E.; Seidman, D.N.; Dunand, D.C. Creep- and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300–450 °C. Acta Mater. 2008, 56, 4369–4377. [Google Scholar] [CrossRef]
- Angella, G.; Donnini, R.; Ripamonti, D.; Maldini, M. The role of particle ripening on the creep acceleration of Nimonic 263 superalloy. In Proceedings of the Eurosuperalloys 2014—2nd European Symposium on Superalloys and Their Applications, Giens, France, 12–16 May 2014. [Google Scholar]
- Li, G.S.; Fang, M.; Xu, G.S.; Sun, R.; Chen, C.H.; Zhang, M.Y.; Li, J.H. Effect of high-temperature ECAP on grain coarsening and refinement. Mater. Sci. Technol. 2022, 38, 181–190. [Google Scholar] [CrossRef]
- Qian, W.; Kai, X.Z.; Tao, R.; Cao, R.; Chen, G.; Zhao, Y.T. Microstructure evolution and high-temperature performances of AA6111 alloy strengthened by Sc, Zr co-microalloying. Mater. Sci. Eng. A 2023, 887, 145788. [Google Scholar] [CrossRef]
- Cao, B.X.; Zhao, Y.L.; Yang, T.; Liu, C.T. L12-Strengthened Co-Rich Alloys for High-Temperature Structural Applications: A Critical Review. Adv. Eng. Mater. 2021, 23, 2100453. [Google Scholar] [CrossRef]
- Liu, J.T.; Liu, S.W.; Zheng, H.L.; Huang, W.J.; Zhao, W.; Liao, W.B. Effects of Transient Thermal Shock on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Coatings. Front. Mater. 2021, 8, 805296. [Google Scholar] [CrossRef]
- Li, W.Y.; Wang, M.L.; Wang, X.D.; Wang, T.M.; Li, T.J.; Lu, Y.P. A novel Co-free high-entropy alloy with excellent antimicrobial and mechanical properties. Rare Met. 2024, 44, 581–590. [Google Scholar] [CrossRef]
- Aizenshtein, M.; Ungarish, Z.; Woller, K.B.; Hayun, S.; Short, M.P. Mechanical and microstructural response of the Al0.5CoCrFeNi high entropy alloy to Si and Ni ion irradiation. Nucl. Mater. Energy 2020, 25, 100813. [Google Scholar] [CrossRef]
- Almisned, G.; Güler, Ö.; Özkul, I.; Baykal, D.S.; Alkarrani, H.; Kilic, G.; Mesbahi, A.; Tekin, H.O. Exploring thermodynamic, physical and radiative interaction properties of quinary FeNiCoCr high entropy alloys (HEAs): A multi-directional characterization study. Phys. Scr. 2024, 99, 115303. [Google Scholar] [CrossRef]
- Meng, J.; Qiao, Y.; Chen, Y.; Liu, T.W.; Li, T.; Wang, H.Y.; Dai, L.H. A high-entropy alloy syntactic foam with exceptional cryogenic and dynamic properties. Mater. Sci. Eng. A 2023, 876, 145146. [Google Scholar] [CrossRef]
- Gao, X.Y.; Liu, J.; Fu, W.J.; Huang, Y.J.; Ning, Z.L.; Zhang, Z.X.; Sun, J.F.; Chen, W. Strong and ductile CoCrFeNi high-entropy alloy microfibers at ambient and cryogenic temperatures. Mater. Des. 2023, 233, 112250. [Google Scholar] [CrossRef]
- Yusenko, K.V.; Riva, S.; Crichton, W.A.; Spektor, K.; Bykova, E.; Pakhomova, A.; Tudball, A.; Kupenko, I.; Rohrbach, A.; Klemme, S.; et al. High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J. Alloys Compd. 2018, 738, 491–500. [Google Scholar] [CrossRef]
- Sonal, S.; Lee, J.H.Y. Recent Advances in Additive Manufacturing of High Entropy Alloys and Their Nuclear and Wear-Resistant Applications. Metals 2021, 11, 1980. [Google Scholar] [CrossRef]
- Kong, F.L.; Inoue, A.; Wang, F.; Chang, C.T. The Influence of Boron and Carbon Addition on the Glass Formation and Mechanical Properties of High Entropy (Fe, Co, Ni, Cr, Mo)-(B, C) Glassy Alloys. Coatings 2024, 14, 118. [Google Scholar] [CrossRef]
- Sfikas, A.K.; Kamnis, S.; Tse MC, H.; Christofidou, K.A.; Gonzalez, S.; Karantzalis, A.E.; Georgatis, E. Microstructural Evaluation of Thermal-Sprayed CoCrFeMnNi0.8V High-Entropy Alloy Coatings. Coatings 2023, 13, 1004. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Li, R.; Lei, Z.F. Influences of Synthetic Parameters on Morphology and Growth of High Entropy Oxide Nanotube Arrays. Coatings 2023, 13, 46. [Google Scholar] [CrossRef]
- Li, S.H.; Ni, X.D.; Tian, F.Y. Ab Initio Predicted Alloying Effects on the Elastic Properties of AlxHf1-xNbTaTiZr High Entropy Alloys. Coatings 2015, 5, 366–377. [Google Scholar] [CrossRef]
- Cui, K.X.; Zhang, Y. High-Entropy Alloy Films. Coatings 2023, 13, 635. [Google Scholar] [CrossRef]
- Fan, R.; Zhao, S.C.; Wang, L.P.; Wang, L.; Guo, E.R. Effect of Annealing Temperature on the Microstructure and Mechanical Properties of CoCrFeNiNb0.2Mo0.2 High Entropy Alloy. Materials 2023, 16, 3987. [Google Scholar] [CrossRef] [PubMed]
- Dufanets, M.; Sklyarchuk, V.; Plevachuk, Y.; Kulyk, Y.; Mudry, S. The Structural and Thermodynamic Analysis of Phase Formation Processes in Equiatomic AlCoCuFeNiCr High-Entropy Alloys. J. Mater. Eng. Perform. 2020, 29, 7321–7327. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, S.S.; Chong, K.; Liu, C.; Cao, Y.W.; Zou, Y. Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation. Vacuum 2023, 207, 111608. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Won, Y.J.; Cho, K.S. Thermodynamic evaluation of the phase stability in mechanically alloyed AlCuxNiCoTi high-entropy alloys. J. Alloys Compd. 2023, 948, 169772. [Google Scholar] [CrossRef]
- Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater. Sci. Eng. A 2007, 460, 403–408. [Google Scholar] [CrossRef]
- Feng, L.; Qin, G.; Yang, X.; Ren, H.; Chen, R.R. Influence of aging heat treatment on the microstructure and mechanical properties of Co29Cr31Cu4Mn15Ni21 high-entropy alloys strengthened by nano-precipitates. Mater. Sci. Eng. A 2025, 920, 147508. [Google Scholar] [CrossRef]
- Hsu W., L.; Tsai C., W.; Yeh A., C.; Yeh J., W. Clarifying the four core effects of high-entropy materials. Chin. Sci. Bull.-Chin Nat. Rev. Chem. 2024, 8, 471–485. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, W.C.; Lin, S.S.; Liu, C.; Qin, J.R.; Qu, P.F.; Zhang, J.; Liu, L. A novel L12-strengthened single crystal high entropy alloy with excellent high-temperature mechanical properties. Mater. Charact. 2024, 212, 113958. [Google Scholar] [CrossRef]
- Li, A.; Kang, K.; Yu, S.; Zhang, J.; Xu, M.; Huang, D.; Che, C.; Liu, S.; Jiang, Y.; Li, G. Heterogeneous structure and dual precipitates induced excellent strength-ductility combination in CoCrNiTi0.1 medium entropy alloy. Mater. Sci. Eng. A 2024, 912, 146992. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, J.R.; Jiang, Q.W.; Yang, G.J.; Xu, M.Q.; Xu, W.Q.; Tang, C.G.; Yi, J.J. An excellent synergy in yield strength and plasticity of NbTiZrTa0.25Cr0.4 refractory high entropy alloy through the regulation of cooling rates. Int. J. Refract. Met. Hard Mater. 2023, 117, 106409. [Google Scholar] [CrossRef]
- Li, H.G.; Huang, Y.J.; Sun, J.F.; Lu, Y.Z. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy. J. Mater. Sci. Technol. 2021, 77, 187–195. [Google Scholar] [CrossRef]
- Fan, R.; Guo, E.J.; Wang, L.P.; Wang, L.; Zhao, S.C.; Li, X.M.; Zhang, X.; Cui, B. Multi-scale microstructure strengthening strategy in CoCrFeNiNb0.1Mo0.3 high entropy alloy overcoming strength-ductility trade-off. Mater. Sci. Eng. A 2023, 882, 145446. [Google Scholar] [CrossRef]
- Feng, R.; Rao, Y.; Liu, C.H.; Xie, X.; Yu, D.J.; Chen, Y.; Ghazisaeidi, M.; Ungar, T.; Wang, H.M.; An, K.; et al. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nat. Commun. 2021, 12, 3588. [Google Scholar] [CrossRef] [PubMed]
- Tunes, M.; Vo, H.; Baldwin, J.; Saleh, T.; Fensin, S.; El-Atwani, O. Perspectives on novel refractory amorphous high-entropy alloys in extreme environments. Appl. Mater. Today 2023, 32, 101796. [Google Scholar] [CrossRef]
- Barron, P.; Carruthers, A.; Fellowes, J.; Jones, N.; Dawson, H.; Pickering, E. Towards V-based high-entropy alloys for nuclear fusion applications. Scr. Mater. 2019, 176, 12–16. [Google Scholar] [CrossRef]
- Lang, E.; Burns, K.; Wang, Y.; Kotula, P.G.; Kustas, A.B.; Rodriguez, S.; Aitkaliyeva, A.; Hattar, K. Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation. Nanomaterials 2022, 12, 2014. [Google Scholar] [CrossRef]
- Ward, T.Z.; Wilkerson, R.P.; Musicó, B.L.; Foley, A.; Brahlek, M.; Weber, W.J.; Sickafus, K.E.; Mazza, A.R. High entropy ceramics for applications in extreme environments. J. Phys. Mater. 2024, 7, 021001. [Google Scholar] [CrossRef]
- El Atwani, O.; Vo, H.T.; Tunes, M.A.; Lee, C.; Alvarado, A.; Krienke, N.; Poplawsky, J.D.; Kohnert, A.A.; Gigax, J.; Chen, W.-Y.; et al. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments. Nat. Commun. 2023, 14, 2516. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang IT, H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.Y.; Wang, W.L.; Liu, B.; Lv, Y.K.; Yang, W.; Xu, D.P.; Liu, Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Lin, Y.P.; Yang, T.F.; Lang, L.; Shan, C.; Deng, H.Q.; Hu, W.Y.; Gao, F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater. 2020, 196, 133–143. [Google Scholar] [CrossRef]
- Kumar Napk Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef]
- Nie, S.J.; Yi, X.N.; Zhou, H.L.; Zhu, H.J.; Yang, L.L.; Fu, F.L.; Li, J.Y.; Yang, H.K.; Xu, G.X.; Lu, S.; et al. Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution. J. Iron Steel Res. Int. 2024, 31, 2852–2863. [Google Scholar] [CrossRef]
- Huang, S.S.; Zhang, J.; Fu, H.J.; Xiong, Y.X.; Ma, S.H.; Xiang, X.P.; Xu, B.; Lu, W.Y.; Zhang, Y.W.; Weber, W.J.; et al. Irradiation performance of high entropy ceramics: A comprehensive comparison with conventional ceramics and high entropy alloys. Prog. Mater. Sci. 2024, 143, 101250. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.N.; Huang, S.Y.; Liu, H.; Yan, Y. Electrochemical behavior and passivation film characterization of TiZrHfNb multi-principal element alloys in NaCl-containing solution. Corros. Sci. 2024, 235, 112185. [Google Scholar] [CrossRef]
- Zhong, M.X.; Xu, T.T.; Wang CX, Z.; Teng, Y.; Cai, Y.C.; Zhang, Z.W.; Xiao, B.; Wang, X. Utilizing high entropy oxide (Ni0.2Co0.2Ca0.2Cu0.2Mg0.2)Fe 2 O 4 in chemical looping process for highly efficient and stable hydrogen production. Chem. Eng. J. 2024, 487, 150521. [Google Scholar] [CrossRef]
- Kumar, A.; Abu Shaz, M.; Mukhopadhyay, N.K.; Yadav, T.P. Phase transformation of AB 5 to AB 2 type phase on substitution of Mn with Zr in TiVCoNi (ZrxMn2-x) (x = 0, 0.3, 0.6, 1.0) high entropy alloys. Mater. Chem. Phys. 2024, 318, 129291. [Google Scholar] [CrossRef]
- Cui, X.Y.; Liu, Y.C.; Wang, X.Y.; Tian, X.L.; Wang, Y.X.; Zhang, G.; Liu, T.; Ding, J.; Hu, W.B.; Chen, Y.N. Rapid High-Temperature Liquid Shock Synthesis of High-Entropy Alloys for Hydrogen Evolution Reaction. Acs Nano 2024, 18, 2948–2957. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Yuan, Z.Y. Non-precious metal high-entropy alloys with d-d electron interactions for efficient and robust hydrogen oxidation reactions in alkaline media. Inorg. Chem. Front. 2024, 11, 2029–2038. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yao, R.Y.; You, J.H.; Liu, L.L.; Yi, B.L.; Zhao, Y.; Li, Y.H.; Zhang, H.Z. Non-precious metal high-entropy electrocatalysts (Al0.5NiCoCr-X0.5) for OER application. Mater. Today Commun. 2024, 39, 109052. [Google Scholar] [CrossRef]
- Ma, Y.J.; Ren, Y.L.; Sun, D.Y.; Wang, B.; Wu, H.; Bian, H.F.; Cao, J.D.; Cao, X.Y.; Ding, F.; Lu, J.H.; et al. High entropy alloy nanoparticles dual-decorated with nitrogen-doped carbon and carbon nanotubes as promising electrocatalysts for lithium-sulfur batteries. J. Mater. Sci. Technol. 2024, 188, 98–104. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Lin, X.; Wang, S.; Wang, J.; Li, Y.; Li, Y.; Zhang, Y.; Zhao, H. Molybdenum-14Rhenium Alloy—The Most Promising Candidate for High-Temperature Semiconductor Substrate Materials. J. Alloys Compd. 2024, 991, 174391. [Google Scholar] [CrossRef]
- Wu, C.S.; Tsai, P.H.; Kuo, C.M.; Tsai, C.W. Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys. Entropy 2018, 20, 967. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y. Solid solution formation criteria for high entropy alloys. In Proceedings of the PRICM 6: Sixth Pacific Rim International Conference on Advanced Materials and Processing, Jeju Island, Republic of Korea, 5–9 November 2007. [Google Scholar]
- Kube, S.A.; Sohn, S.; Uhl, D.; Datye, A.; Mehta, A.; Schroers, J. Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater. 2019, 166, 677–686. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.-Mater. Int. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Abu-Odeh, A.; Galvan, E.; Kirk, T.; Mao, H.; Chen, Q.; Mason, P.; Malak, R.; Arróyave, R. Efficient exploration of the High Entropy Alloy composition-phase space. Acta Mater. 2018, 152, 41–57. [Google Scholar] [CrossRef]
- Tripathy, S.; Gupta, G.; Chowdhury, S.G. High Entropy Alloys: Criteria for Stable Structure. Metall. Mater. Trans. A 2018, 49, 7–17. [Google Scholar] [CrossRef]
- Nong, Z.S.; Zhu, J.C.; Cao, Y.; Yang, X.W.; Lai, Z.H.; Liu, Y. Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater. Sci. Technol. 2014, 30, 363–369. [Google Scholar] [CrossRef]
- Niitsu, K.; Asakura, M.; Yuge, K.; Inui, H. Prediction of Face-Centered Cubic Single-Phase Formation for Non-Equiatomic Cr-Mn-Fe-Co-Ni High-Entropy Alloys Using Valence Electron Concentration and Mean-Square Atomic Displacement. Mater. Trans. 2020, 61, 1874–1880. [Google Scholar] [CrossRef]
- Trung, T.B.; Phuong, D.D.; Toan, N.V.; Linh, N.N.; Bach, T.N.; Bures, R. Soft Magnetic and Mechanical Properties of FeNiCoSi0.25Alx (x = 0-1) High Entropy Alloys Prepared by Arc Melting. Mater. Trans. 2021, 62, 1597–1603. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Li, J.S.; Kou, H.C.; Li, W.M. Characterization of BCC phases in AlCoCrFeNiTiχ high entropy alloys. Mater. Lett. 2015, 138, 78–80. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, D.; Li, B.S. Anomalous microstructure and excellent mechanical properties of Ni35Al21.67Cr21.67Fe21.67 high-entropy alloy with BCC and B2 structure. Mater. Lett. 2018, 216, 252–255. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.N.; Fan, Z.Y.; Ye, Z.Y.; Li, Y.J.; Zhang, C.Y.; Jing, C.N. Microstructures and corrosion resistance enhancement of ultrasonic vibration-assisted medium entropy alloy base laser multi-phase coating. Surf. Coat. Technol. 2023, 454, 129144. [Google Scholar] [CrossRef]
- Shen, X.; Sun, B.R.; Xin, S.W.; Ding, S.J.; Shen, T.D. Creep in a nanocrystalline VNbMoTaW refractory high-entropy alloy. J. Mater. Sci. Technol. 2024, 187, 221–229. [Google Scholar] [CrossRef]
- El-Atwani, O.; Alvarado, A.; Unal, K.; Fensin, S.; Hinks, J.; Greaves, G.; Baldwin, J.; Maloy, S.; Martinez, E. Helium implantation damage resistance in nanocrystalline W-Ta-V-Cr high entropy alloys. Mater. Today Energy 2020, 19, 100599. [Google Scholar] [CrossRef]
- Luan, H.-W.; Shao, Y.; Li, J.-F.; Mao, W.-L.; Han, Z.-D.; Shao, C.; Yao, K.-F. Phase stabilities of high entropy alloys. Scr. Mater. 2020, 179, 40–44. [Google Scholar] [CrossRef]
- Kim, Y.S.; Chae, H.; Huang, E.W.; Jain, J.; Harjo, S.; Kawasaki, T.; Hong, S.I.; Lee, S.Y. Microstructural Evolution and Mechanical Properties of Non-Equiatomic (CoNi)74.66Cr17Fe8C0.34 High-Entropy Alloy. Materials 2022, 15, 1312. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Tang, S.W.; Yan, J.H.; Fu, R.D. Tailoring the microstructure of a non-equiatomic Fe40Mn27Ni26Co5Cr2 high-entropy alloy via friction stir processing. J. Mater. Res. Technol. 2024, 31, 1443–1449. [Google Scholar] [CrossRef]
- Bridges, D.; Zhang, S.H.; Lang, S.; Gao, M.R.; Yu, Z.Z.; Feng, Z.L.; Hu, A.M. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Mater. Lett. 2018, 215, 11–14. [Google Scholar] [CrossRef]
- Ishizu, N.; Kitagawa, J. New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Results Phys. 2019, 13, 102275. [Google Scholar] [CrossRef]
- Qin, F.; Dai, K.Q.; Chen, S.H.; Li, J.J. Nickel content-dependent microstructure and mechanical properties of TiZrNbHfNi high entropy alloy thin films. Mater. Today Commun. 2024, 38, 107932. [Google Scholar] [CrossRef]
- Li, X.J.; Schonecker, S.; Li, X.Q.; Li, W.; Liang, X.Q.; Vitos, L. First-principles calculations of the cleavage energy in random solid solutions: A case study for TiZrNbHf high-entropy alloy. Comput. Mater. Sci. 2022, 212, 111575. [Google Scholar] [CrossRef]
- Gabáni, S.; Cedervall, J.; Ek, G.; Pristáš, G.; Orendáč, M.; Bačkai, J.; Onufriienko, O.; Gažo, E.; Flachbart, K. Search for superconductivity in hydrides of TiZrNb, TiZrNbHf and TiZrNbHfTa equimolar alloys. Phys. B Condens. Matter 2022, 648, 414414. [Google Scholar] [CrossRef]
- Qiao, J.W.; Ma, S.G.; Huang, E.W.; Chuang, C.P.; Liaw, P.K.; Zhang, Y. Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures. Mater. Sci. Forum 2011, 688, 419–425. [Google Scholar] [CrossRef]
- Gali, A.; George, E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics 2013, 39, 74–78. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Zheng, R.X.; Chong, Y.; Sheikh, S.; Guo, S.; Clark, I.T.; Okawa, T.; Wani, I.S.; Bhattacharjee, P.P.; Shibata, A.; et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Chem. Phys. 2018, 210, 207–212. [Google Scholar] [CrossRef]
- Jaladurgam, N.R.; Lozinko, A.; Guo, S.; Harjo, S.; Colliander, M.H. Load redistribution in eutectic high entropy alloy AlCoCrFeNi2.1 during high temperature deformation. Materialia 2022, 22, 101392. [Google Scholar] [CrossRef]
- Tabachnikova, E.D.; Shapovalov, Y.O.; Smirnov, S.N.; Gorban, V.F.; Krapivka, N.A.; Firstov, S.A. Low-temperature mechanical properties and thermally activated plasticity parameters of the CrMnFeCoNi2Cu high entropy alloy. Low Temp. Phys. 2020, 46, 958–968. [Google Scholar] [CrossRef]
- Semerenko, Y.O.; Natsik, V.D.; Tabachnikova, E.D.; Huang, Y.; Langdon, T.G. Mechanisms of Low-Temperature Dislocation Motion in High-Entropy Al0.5CoCrCuFeNi Alloy. Metals 2024, 14, 778. [Google Scholar] [CrossRef]
- Bulatov, O.S.; Klochko, V.S.; Korniyets, A.V.; Kolodiy, I.V.; Kondratov, O.O.; Tikhonovska, T.M. Low temperature elastic properties of Al0.5CoCrCuFeNi high-entropy alloy. Funct. Mater. 2021, 28, 492–496. [Google Scholar]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Diao, H.; Liaw, P.K.; Meyers, M.A. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Sci. Rep. 2017, 7, 42742. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, K.R.; Won, J.W.; Na, Y.S.; Kim, H.S. Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater. Sci. Eng. A 2018, 712, 108–113. [Google Scholar] [CrossRef]
- Kireeva, I.; Chumlyakov, Y.; Vyrodova, A.; Pobedennaya, Z.; Karaman, I. Effect of twinning on the orientation dependence of mechanical behaviour and fracture in single crystals of the equiatomic CoCrFeMnNi high-entropy alloy at 77K. Mater. Sci. Eng. A 2020, 784, 139315. [Google Scholar] [CrossRef]
- Yang, F.; Dong, L.; Cai, L.; Hu, X.; Fang, F. Mechanical properties of FeMnCoCr high entropy alloy alloyed with C/Si at low temperatures. J. Alloys Compd. 2021, 859, 157876. [Google Scholar] [CrossRef]
- Rusakova, H.; Fomenko, L.; Smirnov, S.; Podolskiy, A.; Shapovalov, Y.; Tabachnikova, E.; Tikhonovsky, M.; Levenets, A.; Zehetbauer, M.; Schafler, E. Low temperature micromechanical properties of nanocrystalline CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 2021, 828, 142116. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Chen, Z.J.; Su, M.Y.; Ding, G.; Jiang, M.Q.; Xie, Z.C.; Gong, Y.; Wu, T.; Wu, Z.-H.; Wang, H.-Y.; et al. Lattice distortion and magnetic property of high entropy alloys at low temperatures. J. Mater. Sci. Technol. 2022, 104, 236–243. [Google Scholar] [CrossRef]
- Chaudhary, V.; Soni, V.; Gwalani, B.; Ramanujan, R.V.; Banerjee, R. Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCu(x) high entropy alloys. Scr. Mater. 2020, 182, 99–103. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, J.; Zhou, K.; Mao, Q.; Zhao, Y.; Meng, A.; Li, Z.; Li, J. Coupling effect of temperature and strain rate on mechanical properties and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy. Mater. Sci. Eng. A 2024, 901, 146525. [Google Scholar] [CrossRef]
- Semerenko, Y.; Tabachnikova, E.; Hryhorova, T.; Shumilin, S.; Zoryansky, V. Low-Temperature Elastic Properties of Molybdenum Doped Non-Equiatomic High Entropy Alloys of the Fe-Co-Ni-Cr System. Defect Diffus. Forum 2024, 431, 55–59. [Google Scholar] [CrossRef]
- Moon, J.; Tabachnikova, E.; Shumilin, S.; Hryhorova, T.; Estrin, Y.; Brechtl, J.; Liaw, P.K.; Wang, W.; Dahmen, K.A.; Zargaran, A.; et al. Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Mater. Today 2021, 50, 55–68. [Google Scholar] [CrossRef]
- Wang, Q.; Amar, A.; Jiang, C.L.; Luan, H.W.; Zhao, S.F.; Zhang, H.; Le, G.M.; Liu, X.; Wang, X.Y.; Yang, X.S.; et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: Prospective material for low temperature and corrosion resistant applications. Intermetallics 2020, 119, 106727. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Shu, D.; Zhu, G.; Wang, D.; Sun, B. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater. 2020, 201, 517–527. [Google Scholar] [CrossRef]
- Hu, M.L.; Song, W.D.; Duan, D.B.; Wu, Y. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures. Int. J. Mech. Sci. 2020, 182, 105738. [Google Scholar] [CrossRef]
- Jo, Y.H.; Choi, W.M.; Sohn, S.S.; Kim, H.S.; Lee, B.J.; Lee, S. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2018, 724, 403–410. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Q.; Tang, Y.T.; Xu, M.; Wang, H.; Zhu, C.; Ell, J.; Zhao, S.; MacDonald, B.E.; Cao, P.; et al. Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications. Acta Mater. 2023, 242, 118449. [Google Scholar] [CrossRef]
- Dixit, S.; Rodriguez, S.; Jones, M.R.; Buzby, P.; Dixit, R.; Argibay, N.; DelRio, F.W.; Lim, H.H.; Fleming, D. Refractory High-Entropy Alloy Coatings for High-Temperature Aerospace and Energy Applications. J. Therm. Spray Technol. 2022, 31, 1021–1031. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Ghosh, S.; Patnamsetty, M.; Somani, M.C.; Peura, P. Characteristics of dynamic softening during high temperature deformation of CoCrFeMnNi high-entropy alloy and its correlation with the evolving microstructure and micro-texture. J. Mater. Res. Technol. 2021, 15, 6608–6623. [Google Scholar] [CrossRef]
- Jiang, D.; Li, Z.; Xu, J.; Ren, Q.; Agbedor, S.O.; Lei, Q. High-temperature oxidation behaviors of an equiatomic CrMnFeCoNi high entropy alloy. Mater. Today Commun. 2022, 32, 104185. [Google Scholar] [CrossRef]
- Joseph, J.; Senadeera, M.; Chao, Q.; Shamlaye, K.; Rana, S.; Gupta, S.; Venkatesh, S.; Hodgson, P.; Barnett, M.; Fabijanic, D. Computational design of thermally stable and precipitation-hardened Al-Co-Cr-Fe-Ni-Ti high entropy alloys. J. Alloys Compd. 2021, 888, 161496. [Google Scholar] [CrossRef]
- Joseph, J.; Annasamy, M.; Kada, S.R.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. Optimising the Al and Ti compositional window for the design of γ’ (L12)-strengthened Al–Co–Cr–Fe–Ni–Ti high entropy alloys. Mater. Sci. Eng. A 2022, 835, 142620. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Jin, X.; Du, X.; Li, B. The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr. Mater. 2018, 146, 226–230. [Google Scholar] [CrossRef]
- Lim, K.R.; Lee, K.S.; Lee, J.S.; Kim, J.Y.; Chang, H.J.; Na, Y.S. Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd. 2017, 728, 1235–1238. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Lv, Y.; Song, C.; Guo, N.; Xiao, G.; Zhao, W. Microstructure and properties of W0.5Ta0.3MoNbVAlTi1-xZrx high entropy alloy coatings by laser cladding on the surface of 45# steel. Ceram. Int. 2023, 49, 36416–36428. [Google Scholar]
- Wang, M.; Ma, Z.L.; Xu, Z.Q.; Cheng, X.W. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr. Mater. 2021, 191, 131–136. [Google Scholar] [CrossRef]
- Couzinié, J.P.; Heczko, M.; Mazánová, V.; Senkov, O.N.; Ghazisaeidi, M.; Banerjee, R.; Mills, M.J. High-temperature deformation mechanisms in a BCC+B2 refractory complex concentrated alloy. Acta Mater. 2022, 233, 117995. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, X.; Zhang, M.; Qiao, J. High-Temperature Mechanical Properties of NbTaHfTiZrV0.5 Refractory High-Entropy Alloys. Entropy 2023, 25, 1124. [Google Scholar] [CrossRef] [PubMed]
- Alvi, S.; Akhtar, F. High temperature tribology of CuMoTaWV high entropy alloy. Wear 2019, 426, 412–419. [Google Scholar] [CrossRef]
- Jhong, M.J.; Jen, I.L.; Wang, K.K.; Yen, W.T.; Huang, J.C.; Jang JS, C.; Hsieh, K.-C.; Wu, H.J. Nano-structure to Laves phase: Reduced Thermal Conductivity from Medium-Entropy AlNbV to High-Entropy AlNbVCrTi Alloys. Materialia 2020, 14, 100889. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.J.; Cheng, P.; Wang, Q.; Li, J.J.; Dang, Y.Y.; Wang, J.C.; Liu, C.T. Designing eutectic high entropy alloys of CoCrFeNiNbX. J. Alloys Compd. 2016, 656, 284–289. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, H.; Ji, Y.; Zhu, Z.; Zhang, L.; Li, H.; Li, H.; Wang, A.; Zhang, H. High-temperature structural and mechanical stability of refractory high-entropy alloy Nb40Ti25Al15V10Ta5Hf3W2. Mater. Charact. 2023, 205, 113321. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, Y.; Taylor, A.; Styles, M.; Marceau, R.; Ceguerra, A.; Gibson, M.; Liu, Z.; Fraser, H.; Birbilis, N. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater. 2017, 123, 115–124. [Google Scholar] [CrossRef]
- Gorr, B.; Müller, F.; Azim, M.; Christ, H.J.; Müller, T.; Chen, H.; Kauffmann, A.; Heilmaier, M. High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition. Oxid. Met. 2017, 88, 339–349. [Google Scholar] [CrossRef]
- Shangguan, Z.; Ma, S.; Li, J.; Liu, P.; Wang, Z. Study on high-temperature oxidation of TiZrHfNbTaV high-entropy alloy. Mater. Lett. 2024, 360, 135907. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, R.; Li, Y. Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions. Coatings 2025, 15, 92. https://doi.org/10.3390/coatings15010092
Xi R, Li Y. Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions. Coatings. 2025; 15(1):92. https://doi.org/10.3390/coatings15010092
Chicago/Turabian StyleXi, Rui, and Yanzhou Li. 2025. "Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions" Coatings 15, no. 1: 92. https://doi.org/10.3390/coatings15010092
APA StyleXi, R., & Li, Y. (2025). Recent Advances in the Performance and Mechanisms of High-Entropy Alloys Under Low- and High-Temperature Conditions. Coatings, 15(1), 92. https://doi.org/10.3390/coatings15010092