Mechanisms of Action and Preservation Effects of Packaging Systems for Mushrooms: Novel Approaches to Preserve Irish Edible Mushrooms
Abstract
:1. Introduction
2. Mechanisms of Action and Preservation Effects
2.1. Changes in Quality of Fresh Mushrooms
2.2. Edible Coatings, Essential Oils, and Tyrosinase Inhibitors
2.3. Biodegradable/Compostable Food Contact/Packaging
2.4. Active Packaging
2.5. Nanopackaging
2.6. Modified Atmosphere Packaging (MAP)
3. SWOT Analysis
3.1. Strength
3.2. Weakness
3.3. Opportunities
3.4. Threats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, J.; Zhang, M.; Wang, D.S.; Mujumdar, A.; Bhandari, B.; Zhang, L. New preservation and detection technologies for edible mushrooms: A review. J. Sci. Food Agric. 2023, 103, 3230–3248. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Sułkowska-Ziaja, K.; Krakowska, A.; Opoka, W. Agaricus bisporus and its in vitro culture as a source of indole compounds released into artificial digestive juices. Food Chem. 2016, 199, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Gong, P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int. J. Biol. Macromol. 2021, 183, 1753–1773. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, X.; Xin, G.; Qin, S.; Chen, M.; Jiang, F. Effect of 1-methylcyclopropene (1-MCP) on quality of button mushrooms (Agaricus bisporus) packaged in different packaging materials. Postharvest Biol. Technol. 2020, 159, 111023. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef]
- Taşkın, H.; Süfer, Ö.; Attar, Ş.H.; Bozok, F.; Baktemur, G.; Büyükalaca, S.; Kafkas, N.E. Total phenolics, antioxidant activities and fatty acid profiles of six Morchella species. J. Food Sci. Technol. 2021, 58, 692–700. [Google Scholar] [CrossRef]
- Dasgupta, A.; Acharya, K. Mushrooms: An emerging resource for therapeutic terpenoids. 3 Biotech 2019, 9, 396. [Google Scholar] [CrossRef]
- El-Maradny, Y.A.; El-Fakharany, E.M.; Abu-Serie, M.M.; Hashish, M.H.; Selim, H.S. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int. J. Biol. Macromol. 2021, 179, 239–258. [Google Scholar] [CrossRef]
- Acar, M.; Ayan, A.K.; Aytaç, S.; Arslanoglu, Ş.F. Morphological Characterization of Nettle Lines Collected in of International. In Proceedings of the International Biological, Agricultural and Life Science Congress, Lviv, Ukrain, 7–8 November 2019; pp. 493–499. [Google Scholar]
- Letizia, F.C.M.; Giuseppe, G.; Giuseppe, P.; Fortunato, V.; Ferraro, C.V.; Cateni, F.; Procida, Á.G.; Procida, G.; Gargano, M.L.; Venturella, G.; et al. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2021, 21, 339–383. [Google Scholar] [CrossRef]
- Saini, R.K.; Rauf, A.; Khalil, A.A.; Ko, E.Y.; Keum, Y.S.; Anwar, S.; Alamri, A.; Rengasamy, K.R.R. Edible mushrooms show significant differences in sterols and fatty acid compositions. S. Afr. J. Bot. 2021, 141, 344–356. [Google Scholar] [CrossRef]
- Nowak, R.; Nowacka-Jechalke, N.; Pietrzak, W.; Gawlik-Dziki, U. A new look at edible and medicinal mushrooms as a source of ergosterol and ergosterol peroxide—UHPLC-MS/MS analysis. Food Chem. 2022, 369, 130927. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Fang, Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci. Technol. 2020, 105, 468–482. [Google Scholar] [CrossRef]
- The Irish Mushroom Industry. Teagasc Fact Sheet Hortic 7-Mushroom Prod. 2020. (V1 2020). Available online: https://www.teagasc.ie/crops/horticulture/mushrooms/ (accessed on 26 January 2024).
- Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh mushroom preservation techniques. Foods 2021, 10, 2126. [Google Scholar] [CrossRef] [PubMed]
- Gholami, R.; Ahmadi, E.; Farris, S. Shelf life extension of white mushrooms (Agaricus bisporus) by low temperatures conditioning, modified atmosphere, and nanocomposite packaging material. Food Packag. Shelf Life 2017, 14, 88–95. [Google Scholar] [CrossRef]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.M.B.; Freitas, A.C.; Barros, L.; Ferreira, I.C.F.R.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.J.; Liu, X.; Liu, F. A review of multilayer and composite films and coatings for active biodegradable packaging. NPJ Sci. Food 2022, 6, 18. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent developments on umami ingredients of edible mushrooms—A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Xue, Z.; Hao, J.; Yu, W.; Kou, X. Effects of Processing and Storage Preservation Technologies on Nutritional Quality and Biological Activities of Edible Fungi: A Review. J. Food Process Eng. 2017, 40, e12437. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.Y.; Sun, D.W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Shi, D.; Yin, C.; Fan, X.; Yao, F.; Qiao, Y.; Xue, S.; Lu, Q.; Feng, C.; Meng, J.; Gao, H. Effects of ultrasound and gamma irradiation on quality maintenance of fresh Lentinula edodes during cold storage. Food Chem. 2022, 373, 131478. [Google Scholar] [CrossRef]
- Lagnika, C.; Zhang, M.; Mothibe, K.J. Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2013, 82, 87–94. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.; Huang, H.; Zhang, W.; Chen, J.; Cao, C. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Huang, H.W.; Hsu, C.P.; Yang, B.B.; Wang, C.Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Xu, B.; Yagoub, A.E.A.; Mustapha, A.T.; Zhou, C. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. Innov. Food Sci. Emerg. Technol. 2021, 72, 102741. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Y.; Shan, X.; Wang, S. Evaluation of 1-methylcyclopropene (1-MCP) treatment combined with nano-packaging on quality of pleurotus eryngii. J. Food Sci. Technol. 2018, 55, 4424–4431. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.K.; Das, S.; Singh, B.K.; Kishore Dubey, N. Green facile synthesis of cajuput (Melaleuca cajuputi Powell.) essential oil loaded chitosan film and evaluation of its effectiveness on shelf-life extension of white button mushroom. Food Chem. 2023, 401, 134114. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Sun, Y.; Xia, R.; Hou, Z.; Li, Y.; Wang, Y.; Pan, S.; Fan, Y.; Zhu, J.; et al. Review of packaging for improving storage quality of fresh edible mushrooms. Packag. Technol. Sci. 2023, 36, 629–646. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Qi, Z.; Deng, Z.; Han, A.; Long, H.; Wang, J.; Yao, W.; et al. Advances in Postharvest Storage and Preservation Strategies for Pleurotus eryngii. Foods 2023, 12, 1046. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.Y.; Pan, L.H.; Li, Q.M.; Luo, J.P.; Zha, X.Q. Co-encapsulation systems for delivery of bioactive ingredients. Food Res. Int. 2022, 155, 111073. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible films and coatings as food-quality preservers: An overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha; Prasad, J.; Yadav, A.; Upadhyay, A.; Neeraj; Shukla, S.; Petkoska, A.T.; Heena; Suri, S.; et al. Recent Trends in Edible Packaging for Food Applications—Perspective for the Future. Food Eng. Rev. 2023, 15, 718–747. [Google Scholar] [CrossRef]
- Matloob, A.; Ayub, H.; Mohsin, M.; Ambreen, S.; Khan, F.A.; Oranab, S.; Rahim, M.A.; Khalid, W.; Nayik, G.A.; Ramniwas, S.; et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega 2023, 8, 28932–28944. [Google Scholar] [CrossRef]
- Liyanapathiranage, A.; Dassanayake, R.S.; Gamage, A.; Karri, R.R.; Manamperi, A.; Evon, P.; Jayakodi, Y.; Madhujith, T.; Merah, O. Recent Developments in Edible Films and Coatings for Fruits and Vegetables. Coatings 2023, 13, 1177. [Google Scholar] [CrossRef]
- Ribeiro, I.S.; Maciel, G.M.; Bortolini, D.G.; de Andrade Arruda Fernande, I.; Maroldi, W.V.; Pedro, A.C.; Rubio, F.T.V.; Haminiuk, C.W.I. Sustainable innovations in edible films and coatings: An overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Guimarães, J.E.R.; de la Fuente, B.; Pérez-Gago, M.B.; Andradas, C.; Carbó, R.; Mattiuz, B.H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Mahunu, G.K.; Arslan, M.; Abdalhai, M.; Zhihua, L. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydr. Polym. 2019, 224, 115141. [Google Scholar] [CrossRef] [PubMed]
- Dierings de Souza, E.J.; Kringel, D.H.; Guerra Dias, A.R.; da Rosa Zavareze, E. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr. Polym. 2021, 265, 118068. [Google Scholar] [CrossRef]
- He, Y.; Suyama, T.L.; Kim, H.; Glukhov, E.; Gerwick, W.H. Discovery of Novel Tyrosinase Inhibitors from Marine Cyanobacteria. Front. Microbiol. 2022, 13, 912621. [Google Scholar] [CrossRef]
- Hwang, C.Y.; Halim, Y.; Sugata, M.; Rosa, D.; Wijaya, S.P.; Steven, E. Assessment of Agaricus bisporus mushroom as protective agent against ultraviolet exposure. bioRxiv 2021. [Google Scholar] [CrossRef]
- Nazir, Y.; Rafique, H.; Roshan, S.; Shamas, S.; Ashraf, Z.; Rafiq, M.; Tahir, T.; Qureshi, Z.U.R.; Aslam, A.; Asad, M.H.H. Bin Molecular Docking, Synthesis, and Tyrosinase Inhibition Activity of Acetophenone Amide: Potential Inhibitor of Melanogenesis. Biomed Res. Int. 2022, 2022, 1040693. [Google Scholar] [CrossRef]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Mahdi, S.; Salehabadi, A.; Mohammadi, A.; Uthaya, U.S.; Khalil, H.P.S.A. Trends in Food Science & Technology Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H.-m. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Wang, Y.Y.; Bu, H.; Dong, T. Changes in cell wall metabolism and flavor qualities of mushrooms (Agaricus bernardii) under EMAP treatments during storage. Food Packag. Shelf Life 2021, 29, 100732. [Google Scholar] [CrossRef]
- Li, Y.; Ding, S.; Kitazawa, H.; Wang, Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag. Shelf Life 2022, 32, 100865. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, X.; Song, Z.; Kong, W.; Kang, Y.; Kong, W.; Ng, T.B. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem. 2021, 352, 129357. [Google Scholar] [CrossRef]
- Dokhanieh, A.Y.; Aghdam, M.S. Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Sci. Hortic. 2016, 207, 146–151. [Google Scholar] [CrossRef]
- Sun, B.; Ren, H.; Chen, X.; Ma, F.; Yu, G.; Chen, M.; Jiang, F. Short-term anaerobic treatment combined with perforation mediated MAP on the quality of Agaricus bisporus mushroom. Postharvest Biol. Technol. 2021, 176, 111518. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, Y.; Tan, H.; Wang, B.; Peng, W.; Sun, Q. Metabolomics reveals dopa melanin involved in the enzymatic browning of the yellow cultivars of East Asian golden needle mushroom (Flammulina filiformis). Food Chem. 2022, 370, 131295. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yun, J.; Zhang, Y.; Bi, Y.; Zhao, F.; Niu, Y. Effects of ozone fumigation combined with nano-film packaging on the postharvest storage quality and antioxidant capacity of button mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2021, 176, 111501. [Google Scholar] [CrossRef]
- Donglu, F.; Wenjian, Y.; Kimatu, B.M.; Liyan, Z.; Xinxin, A.; Qiuhui, H. Comparison of flavour qualities of mushrooms (Flammulina velutipes) packed with different packaging materials. Food Chem. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Sun, L.B.; Zhang, Z.Y.; Xin, G.; Sun, B.X.; Bao, X.J.; Wei, Y.Y.; Zhao, X.M.; Xu, H.R. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, Y.; Li, D.; Xiang, C.; Jiang, Z.; Wang, J. The main factors inducing postharvest lignification in king oyster mushrooms (Pleurotus eryngii): Wounding and ROS-mediated senescence. Food Chem. 2019, 301, 125224. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Yang, H.; Wang, A. Effect of exogenous glycine betaine on qualities of button mushrooms (Agaricus bisporus) during postharvest storage. Eur. Food Res. Technol. 2015, 240, 41–48. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- Hu, K.; Dars, A.G.; Liu, Q.; Xie, B.; Sun, Z. Phytochemical profiling of the ripening of Chinese mango (Mangifera indica L.) cultivars by real-time monitoring using UPLC-ESI-QTOF-MS and its potential benefits as prebiotic ingredients. Food Chem. 2018, 256, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Wang, C.; Shang, C.; You, X.; Zhang, L.; Liu, W. Integrated study of the mechanism of tyrosinase inhibition by baicalein using kinetic, multispectroscopic and computational simulation analyses. Int. J. Biol. Macromol. 2018, 118, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Primožič, M.; Knez, Ž.; Leitgeb, M. (Bio)nanotechnology in food science—Food packaging. Nanomaterials 2021, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, X.; Cheng, M.; Zhao, P.; Wang, Y.; Zhang, R.; Wang, X.; Wang, J.; Chen, M. Preparation, characterization and application of poly(lactic acid)/corn starch/eucalyptus leaf essential oil microencapsulated active bilayer degradable film. Int. J. Biol. Macromol. 2022, 195, 264–273. [Google Scholar] [CrossRef]
- Correa, M.G.; Martínez, F.B.; Vidal, C.P.; Streitt, C.; Escrig, J.; de Dicastillo, C.L. Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein J. Nanotechnol. 2020, 11, 1450–1469. [Google Scholar] [CrossRef] [PubMed]
- Amin, U.; Khan, M.U.; Majeed, Y.; Rebezov, M.; Khayrullin, M.; Bobkova, E.; Shariati, M.A.; Chung, I.M.; Thiruvengadam, M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int. J. Biol. Macromol. 2021, 183, 2184–2198. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, X.; Jiang, T.; Zheng, X. Effect of chitosan and guar gum based composite edible coating on quality of mushroom (Lentinus edodes) during postharvest storage. Sci. Hortic. 2019, 253, 382–389. [Google Scholar] [CrossRef]
- Louis, E.; Villalobos-Carvajal, R.; Reyes-Parra, J.; Jara-Quijada, E.; Ruiz, C.; Andrades, P.; Gacitúa, J.; Beldarraín-Iznaga, T. Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packag. Shelf Life 2021, 28, 100662. [Google Scholar] [CrossRef]
- Pleșoianu, A.M.; Nour, V. Effect of Some Polysaccharide-Based Edible Coatings on Fresh White Button Mushroom (Agaricus bisporus) Quality during Cold Storage. Agriculture 2022, 12, 1491. [Google Scholar] [CrossRef]
- Mohammadi, L.; Hassanzadeh Khankahdani, H.; Tanaka, F.; Tanaka, F. Postharvest shelf-life extension of button mushroom (Agaricus bisporus L.) by aloe vera gel coating enriched with basil essential oil. Environ. Control Biol. 2021, 59, 87–98. [Google Scholar] [CrossRef]
- Yazıcıoğlu, N. Effects of Leek Powder and Sunflower Oil in Guar Gum Edible Coating on the Preservation of Mushrooms (Agaricus bisporus). Turk. J. Agric. Food Sci. Technol. 2023, 11, 2533–2539. [Google Scholar] [CrossRef]
- Gao, M.; Feng, L.; Jiang, T. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 2014, 149, 107–113. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll. 2020, 100, 105387. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023, 12, 801. [Google Scholar] [CrossRef]
- Niu, Y.; Yun, J.; Bi, Y.; Wang, T.; Zhang, Y.; Liu, H.; Zhao, F. Predicting the shelf life of postharvest Flammulina velutipes at various temperatures based on mushroom quality and specific spoilage organisms. Postharvest Biol Technol. 2020, 167, 111235. [Google Scholar] [CrossRef]
- Shao, P.; Yu, J.; Chen, H.; Gao, H. Development of microcapsule bioactive paper loaded with cinnamon essential oil to improve the quality of edible fungi. Food Packag. Shelf. Life 2021, 27, 100617. [Google Scholar] [CrossRef]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr. Polym. 2020, 242, 116388. [Google Scholar] [CrossRef]
- Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Tragacanth gum containing Zataria multiflora Boiss. essential oil as a natural preservative for storage of button mushrooms (Agaricus bisporus). Food Hydrocoll. 2017, 72, 202–209. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT 2019, 106, 218–228. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Cai, Y.-Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2010, 62, 1–20. [Google Scholar] [CrossRef]
- Ji, K.; Cho, Y.S.; Kim, Y.T. Tyrosinase Inhibitory and Anti-oxidative Effects of Lactic Acid Bacteria Isolated from Dairy Cow Feces. Probiotics Antimicrob. Proteins 2018, 10, 43–55. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398. [Google Scholar] [CrossRef]
- Haudecoeur, R.; Carotti, M.; Gouron, A.; Maresca, M.; Buitrago, E.; Hardre, R.; Bergantino, E.; Jamet, H.N.; Belle, C.; Reglier, M.; et al. 2-Hydroxypyridine- N-oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Med. Chem. Lett. 2016, 8, 55–60. [Google Scholar] [CrossRef]
- Lee, H.; Yildiz, G.; dos Santos, L.C.; Jiang, S.; Andrade, J.E.; Engeseth, N.J.; Feng, H. Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocoll. 2016, 55, 200–209. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, D.Y.; Chen, Y.L.; Wei, X.Y.; Li, Y.T.; Kong, L.M.; Hider, R.C.; Zhou, T. A Novel Inhibitor Against Mushroom Tyrosinase with a Double Action Mode and Its Application in Controlling the Browning of Potato. Food Bioprocess Technol. 2017, 10, 2146–2155. [Google Scholar] [CrossRef]
- Deshmukh, B.S.; Waghmode, A. Role of wild edible fruits as a food resource: Traditional knowledge. Int. J. Pharm. Life Sci. 2011, 2, 919–924. [Google Scholar]
- Zhang, L.; Liu, Z.; Sun, Y.; Wang, X.; Li, L. Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packag. Shelf Life 2020, 24, 100470. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, M.; Wang, X.; Wang, J. Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms. Food Hydrocoll. 2019, 95, 517–525. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Pei, F.; Han, P.; Zhou, Z.; Fang, D.; Mariga, A.M.; Yang, W.; Ma, N.; Hu, Q. The characteristics of the film assembled by caffeic acid-grafted-chitosan/polylactic acid and its effect on the postharvest quality of Agaricus bisporus. Food Packag. Shelf Life 2022, 32, 100828. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. Food Biosci. 2022, 49, 101867. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.J.; Farrera-Rebollo, R.R.; Andraca-Adame, J.A.; Arzate-Vázquez, I.; Mendez-Mendez, J.V.; Moreno-Ruiz, L.A. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int. J. Biol. Macromol. 2013, 61, 196–203. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, P.; Pandey, J. Binary grafted chitosan film: Synthesis, characterization, antibacterial activity and prospects for food packaging. Int. J. Biol. Macromol. 2018, 115, 341–348. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhang, X.; Kan, J.; Jin, C. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 147, 39–47. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 155, 47–56. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Liu, Y.; Fang, H.; Zheng, S.; Liu, H.; Guan, W.; Yan, R. Biodegradable PBAT/PLA packaging maintained the quality of postharvest shiitake mushroom by modified humidity and atmosphere. Food Packag. Shelf Life 2022, 34, 100949. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Liu, Z.; Huang, X.; Yi, F.; Hou, F.; Zhang, F. Preparation and characterization of chitosan/zein film loaded with lemon essential oil: Effects on postharvest quality of mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2021, 192, 635–643. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Wu, X.; Fan, X.; Wang, F.; Lin, Q.; Guan, W.; Zhang, N. UV-C treatment inhibits browning, inactivates Pseudomonas tolaasii and reduces associated chemical and enzymatic changes of button mushrooms. J. Sci. Food Agric. 2022, 102, 3259–3265. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-hindi, R. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chem. 2020, 310, 125915. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. [Google Scholar] [CrossRef]
- Han, L.; Qin, Y.; Liu, D.; Chen, H.; Li, H.; Yuan, M. Evaluation of biodegradable film packaging to improve the shelf-life of Boletus edulis wild edible mushrooms. Innov. Food Sci. Emerg. Technol. 2015, 29, 288–294. [Google Scholar] [CrossRef]
- Ojeda, G.A.; Sgroppo, S.C.; Martín-Belloso, O.; Soliva-Fortuny, R. Chitosan/tripolyphosphate nanoaggregates enhance the antibrowning effect of ascorbic acid on mushroom slices. Postharvest Biol. Technol. 2019, 156, 110934. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Lu, S.; Tao, J.; Liu, X.; Wen, Z. Baicalin-liposomes loaded polyvinyl alcohol-chitosan electrospinning nanofibrous films: Characterization, antibacterial properties and preservation effects on mushrooms. Food Chem. 2022, 371, 131372. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Kuai, L.; Liu, F.; Chiou, B.S.; Avena-Bustillos, R.J.; McHugh, T.H.; Zhong, F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll. 2021, 120, 106992. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Arif, M.; Alvarez, A.M. Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Front. Microbiol. 2017, 8, 1728. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Development and characterization of nano biopolymer containing cumin oil as a new approach to enhance antioxidant properties of button mushroom. Int. J. Biol. Macromol. 2018, 113, 662–668. [Google Scholar] [CrossRef]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci. Technol. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Zuo, C.; Hu, Q.; Su, A.; Pei, F.; Ma, G.; Xu, H.; Xie, M.; Liu, J.; Mariga, A.M.; Yang, W. Transcriptome analysis reveals the underlying mechanism of nanocomposite packaging in delaying quality deterioration of Flammulina velutipes. Postharvest Biol. Technol. 2021, 182, 111723. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Hanula, M.; Pogorzelska-Nowicka, E.; Pogorzelski, G.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Active packaging of button mushrooms with zeolite and açai extract as an innovative method of extending its shelf life. Agriculture 2021, 11, 653. [Google Scholar] [CrossRef]
- Chang, C.K.; Cheng, K.C.; Hou, C.Y.; Wu, Y.S.; Hsieh, C.W. Development of active packaging to extend the shelf life of Agaricus bisporus by using plasma technology. Polymers 2021, 13, 2120. [Google Scholar] [CrossRef]
- Han Lyn, F.; Maryam Adilah, Z.A.; Nor-Khaizura, M.A.R.; Jamilah, B.; Nur Hanani, Z.A. Application of modified atmosphere and active packaging for oyster mushroom (Pleurotus ostreatus). Food Packag. Shelf Life 2020, 23, 100451. [Google Scholar] [CrossRef]
- Bolumar, T.; Andersen, M.L.; Orlien, V. Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chem. 2011, 129, 1406–1412. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, M.; Lee, Y.S. Thermally buffered corrugated packaging for preserving the postharvest freshness of mushrooms (Agaricus bispours). J. Food Eng. 2018, 216, 11–19. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Qin, Q.; Zhao, L.; Wang, Y.; Wu, X.; Liao, X. Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control 2021, 130, 108371. [Google Scholar] [CrossRef]
- Wrona, M.; Bentayeb, K.; Nerín, C. A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control 2015, 54, 200–207. [Google Scholar] [CrossRef]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.J.; Li, J.R.; Han, X.X.; Zhang, L.; Jiang, T.J.; Xia, M. Effects of Active Modified Atmosphere Packaging on Postharvest Quality of Shiitake Mushrooms (Lentinula edodes) Stored at Cold Storage. J. Integr. Agric. 2012, 11, 474–482. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, X.; Kitazawa, H.; Wang, X.; Guo, Y.; Li, L.; Liu, H.; Wang, Y.; Wang, J. Characterization of bioactive films loaded with melatonin and regulation of postharvest ROS scavenging and ascorbate-glutathione cycle in Agaricus bisporus. Postharvest Biol. Technol. 2022, 194, 112107. [Google Scholar] [CrossRef]
- Dash, K.K.; Deka, P.; Bangar, S.P.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef]
- Piperigkou, Z.; Karamanou, K.; Engin, A.B.; Gialeli, C.; Docea, A.O.; Vynios, D.H.; Pavão, M.S.G.; Golokhvast, K.S.; Shtilman, M.I.; Argiris, A.; et al. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem. Toxicol. 2016, 91, 42–57. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 2011, 3, 362–382. [Google Scholar] [CrossRef]
- Xing, Y.; Li, W.; Wang, Q.; Li, X.; Xu, Q.; Guo, X.; Bi, X.; Liu, X.; Shui, Y.; Lin, H.; et al. Antimicrobial Nanoparticles Incorporated in Edible Coatings and Films for the Preservation of Fruits and Vegetables. Molecules 2019, 24, 1695. [Google Scholar] [CrossRef]
- Emamhadi, M.A.; Sarafraz, M.; Akbari, M.; Thai, V.N.; Fakhri, Y.; Linh, N.T.T.; Mousavi Khaneghah, A. Nanomaterials for food packaging applications: A systematic review. Food Chem. Toxicol. 2020, 146, 111825. [Google Scholar] [CrossRef]
- Fang, D.; Wang, H.; Deng, Z.; Kimatu, B.M.; Pei, F.; Hu, Q.; Ma, N. Nanocomposite packaging regulates energy metabolism of mushrooms (Flammulina filiformis) during cold storage: A study on mitochondrial proteomics. Postharvest Biol. Technol. 2022, 193, 112046. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, X.; Wu, W.; Tong, C.; Chen, H.; Yang, H.; Gao, H. Effects of negative air ions treatment on the quality of fresh shiitake mushroom (Lentinus edodes) during storage. Food Chem. 2022, 371, 131200. [Google Scholar] [CrossRef]
- Chau, C.F.; Wu, S.H.; Yen, G.C. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 2007, 18, 269–280. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Cerisuelo, J.P.; Domínguez, I.; López-Carballo, G.; Catalá, R.; Gavara, R. Nanotechnology in Food Packaging. In Nanomaterials for Food Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 205–232. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Cai, M.; Zhong, H.; Ma, Q.; Yang, K.; Sun, P. Physicochemical and microbial quality of Agaricus bisporus packaged in nano-SiO2/TiO2 loaded polyvinyl alcohol films. Food Control 2022, 131, 108452. [Google Scholar] [CrossRef]
- Zheng, B.; Kou, X.; Liu, C.; Wang, Y.; Yu, Y.; Ma, J.; Liu, Y.; Xue, Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem. 2023, 407, 135099. [Google Scholar] [CrossRef]
- Ma, N.; Wang, C.; Pei, F.; Han, P.; Su, A.; Ma, G.; Kimatu, B.M.; Hu, Q.; Fang, D. Polyethylene-based packaging material loaded with nano-Ag/TiO2 delays quality deterioration of Agaricus bisporus via membrane lipid metabolism regulation. Postharvest Biol. Technol. 2022, 183, 111747. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Fang, D.; Pei, F.; Mariga, A.M.; Yang, W.; Hu, Q. Effect of nanocomposite packaging on postharvest senescence of Flammulina velutipes. Food Chem. 2018, 246, 414–421. [Google Scholar] [CrossRef]
- Zhang, P.; Fang, D.; Pei, F.; Wang, C.; Jiang, W.; Hu, Q.; Ma, N. Nanocomposite packaging materials delay the browning of Agaricus bisporus by modulating the melanin pathway. Postharvest Biol. Technol. 2022, 192, 112014. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, P.; Bai, S.; Ma, N.; Fang, D.; Yang, W.; Hu, Q.; Pei, F. Caffeic acid-grafted-chitosan/polylactic acid film packaging enhances the postharvest quality of Agaricus bisporus by regulating membrane lipid metabolism. Food Res. Int. 2022, 158, 111557. [Google Scholar] [CrossRef]
- Sami, R.; Elhakem, A.; Almushhin, A.; Alharbi, M.; Almatrafi, M.; Benajiba, N.; Fikry, M.; Helal, M. Enhancement in physicochemical parameters and microbial populations of mushrooms as influenced by nano-coating treatments. Sci. Rep. 2021, 11, 7915. [Google Scholar] [CrossRef]
- Khojah, E.; Sami, R.; Helal, M.; Elhakem, A.; Benajiba, N.; Alharbi, M.; Alkaltham, M.S. Effect of coatings using titanium dioxide nanoparticles and chitosan films on oxidation during storage on white button mushroom. Crystals 2021, 11, 603. [Google Scholar] [CrossRef]
- Yin, Y.; Xing, L.; Zhou, G.; Zhang, W. Antioxidative and Antibacterial Activities of Rosemary Extract in Raw Ground Pork Patties. J. Food Nutr. Res. 2016, 4, 806–813. [Google Scholar] [CrossRef]
- Zheng, E.; Zheng, Z.; Ren, S.; Zhou, H.; Yang, H. Postharvest quality and reactive oxygen species metabolism improvement of Coprinus comatus mushroom using allyl isothiocyanate fumigation. Food Qual. Saf. 2022, 6, fyac031. [Google Scholar] [CrossRef]
- Oliveira, F.; Sousa-Gallagher, M.J.; Mahajan, P.V.; Teixeira, J.A. Evaluation of MAP engineering design parameters on quality of fresh-sliced mushrooms. J. Food Eng. 2012, 108, 507–514. [Google Scholar] [CrossRef]
- Jafri, M.; Jha, A.; Bunkar, D.S.; Ram, R.C. Quality retention of oyster mushrooms (Pleurotus florida) by a combination of chemical treatments and modified atmosphere packaging. Postharvest Biol. Technol. 2013, 76, 112–118. [Google Scholar] [CrossRef]
- Wei, W.; Lv, P.; Xia, Q.; Tan, F.; Sun, F.; Yu, W.; Jia, L.; Cheng, J. Fresh-keeping effects of three types of modified atmosphere packaging of pine-mushrooms. Postharvest Biol. Technol. 2017, 132, 62–70. [Google Scholar] [CrossRef]
- Jiang, T.; Luo, S.; Chen, Q.; Shen, L.; Ying, T. Effect of integrated application of gamma irradiation and modified atmosphere packaging on physicochemical and microbiological properties of shiitake mushroom (Lentinus edodes). Food Chem. 2010, 122, 761–767. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Klaus, A.; Cheng, A.; Salis, S.A.; Abdul Halim-Lim, S. Total quality index of commercial oyster mushroom Pleurotus sapidus in modified atmosphere packaging. Br. Food J. 2019, 121, 1871–1883. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Lin, X.; Shi, C.; Liu, Z. Bacterial microbiota profile in gills of modified atmosphere-packaged oysters stored at 4 °C. Food Microbiol. 2017, 61, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Gholami, R.; Ahmadi, E.; Ahmadi, S. Investigating the effect of chitosan, nanopackaging, and modified atmosphere packaging on physical, chemical, and mechanical properties of button mushroom during storage. Food Sci. Nutr. 2020, 8, 224–236. [Google Scholar] [CrossRef]
- Gunko, S.; Trynchuk, O.; Naumenko, O.; Podpriatov, H.; Khomichak, L.; Bober, A.; Zavhorodnii, V.; Voitsekhivskyi, V.; Zavadska, O.; Bondareva, L. The effect of carbon dioxide on the quality of the mushrooms. Potravin. Slovak J. Food Sci. 2021, 15, 1018–1028. [Google Scholar] [CrossRef]
- Jiang, T. Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biol. Technol. 2013, 76, 91–97. [Google Scholar] [CrossRef]
- Li, Y.; Ishikawa, Y.; Satake, T.; Kitazawa, H.; Qiu, X.; Rungchang, S. Effect of active modified atmosphere packaging with different initial gas compositions on nutritional compounds of shiitake mushrooms (Lentinus edodes). Postharvest Biol. Technol. 2014, 92, 107–113. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Hu, H.; Sun, Y.; Wang, Y.; Zhao, Y. High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii. Postharvest Biol. Technol. 2013, 85, 141–146. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, S.; Jaiswal, A.K. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging. Food Chem. 2022, 376, 131912. [Google Scholar] [CrossRef]
- Boyle, C. Cream of the crop. TResearch 2023, 18, 22–23. [Google Scholar]
- Villaescusa, R.; Gil, M.I. Quality improvement of Pleurotus mushrooms by modified atmosphere packaging and moisture absorbers. Postharvest Biol. Technol. 2003, 28, 169–179. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-cut Produce and the Microbial Consequences—A Review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Oliveira, F.A.R.; Montanez, J.C.; Frias, J. Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innov. Food Sci. Emerg. Technol. 2007, 8, 84–92. [Google Scholar] [CrossRef]
- Boyaci, D.; Onarinde, B.; Aiyedun, S.; Waldron, K.W.; May, D.; Tucker, N. The beneficial effects of the addition of pulped Agaricus bisporus mushroom body co-product to Kraft pulp packaging materials. Clean. Mater. 2022, 3, 100049. [Google Scholar] [CrossRef]
Edible Coating | Applicable | Mechanism of Actions a | Preservation Effects b | Reference |
---|---|---|---|---|
Chitosan-guar gum | Lentinus edodes | Significantly reduced cell wall and membrane destructive symptoms Increased antimicrobial activity | Maintained higher firmness, protein, and ascorbic acid Increased total soluble solids and reducing sugars | [66] |
Alginate-glycerol-cinnamon nanoemulsions | Agaricus bisporus | Decreased respiration rate Reduced polyphenol oxidase activity Reduced Pseudomonas counts Increased antioxidant activity | Decreased weight loss Maintained firmness Maintained colour and total polyphenols | [67] |
Pectin-chitosan-sodium alginate- carboxymethyl cellulose- N-acetyl cysteine | Agaricus bisporus | Controlled lipid peroxidation Increased antioxidant activity | Delayed weight loss and cap opening | [68] |
Aloe vera-basil essential oil | Agaricus bisporus | Reduced polyphenol oxidase, respiration, and electrolyte leakage rate Increased phenylalanine ammonia-lyase and antioxidant activity | Reduced weight loss and softening Increased total phenolic contents Delayed browning and colour change | [69] |
Leek powder sunflower oil-guar gum | Agaricus bisporus | Reduced the rate of respiration | Reduced weight loss Maintained colour | [70] |
Alginate-nanoAg-Silver nitrate-sodium Borohydride-polyvinylpyrrolidone | Lentinus edodes | Reduced the rate of respiration and physiological activity | Extended shelf life Reduced weight loss softening, browning, and microbial counts. Increased total soluble solids | [71] |
Essential Oils | Shelf Life | References |
---|---|---|
Eucalyptus leaf | 12 | [63,73] |
Lemon | 12 | [47] |
Cinnamon | 5 | [74,75] |
Tocopherol with zein | 12 | [76] |
Cinnamaldehyde | 12 | [67] |
Satureja khuzistanica | 16 | [77] |
Citrus aurantium peel | 20 | [78] |
Cumin seed | 20 | [78] |
Cuminum cyminum | 20 | [78] |
Citrus aurantium | 20 | [72] |
Melaleuca cajuputi Powell. | 12 | [28] |
Compound Name | Tyrosinase Inhibition (IC50 Values (mM)) | References |
---|---|---|
Natural anthocyanidins | 18–78 | [81,82] |
Natural aurones | 31.7–98.5 | [82] |
Synthetic aurones | 31–100 | [83] |
Natural chalcones | 23–106.7 | [60] |
Synthetic chalcones | 29.3–114.4 | [58,84] |
Natural flavones | 110 | [58,59,60,61] |
Natural flavanols | 55–300 | [58,59] |
Natural isoflavones | 52–500 | [61] |
Natural flavanones | 44–500 | [81,82] |
Synthetic flavonols | 53–182 | [82] |
Kojic acid | 59–318 | [58,59,60,61,85] |
Biodegradable Packaging | Applicable | Mechanism of Actions a | Preservation Effects b | Reference |
---|---|---|---|---|
Chitosan-0.0 to 4.0% w/v dextran film | Agaricus bisporus | Highest tensile and elastic strength, water vapour permeability attained with 0.5% w/v dextran dispersion in chitosan |
Delayed spoilage Shelf life of 28 days at 4 °C | [32] |
Chitosan-gallic acid film | Agaricus bisporus |
Increased the activities of superoxide dismutase and catalase The lowest respiration rate and polyphenol oxidase activity recorded | Maintained mushroom quality by reducing browning degree, O2−, malondialdehyde content, H2O2, and rate of electrolyte leakage | [93] |
PLA-polybutylene adipate film | Lentinus edodes |
Effectively reduced the respiration rate Lowered microbial count and CO2 level Prevented water vapour condensation inside the package |
Inhibited cap opening Improved phenolic contents Maintained firmness Delayed senescence Shelf life of 14 days | [95] |
Chitosan-zein-lemon essential oil film | Agaricus bisporus |
Significantly inhibited microbial, PPO, and POD activities Decreased respiratory rate Increased antioxidant and antibacterial activities |
Delayed browning Inhibited microbial growth Maintained textural properties | [96] |
Chitosan-zein film |
Reduced electrolyte leakage and respiration rate Significantly inhibited PPO and POD activities Lowered physiology activity |
Lowered weight loss Maintained colour | [94] | |
Chitosan-zein/α-tocopherol film | Agaricus bisporus |
Reduced respiration rate, electrolyte leakage rate, polyphenol oxidase and peroxidase activity Increased CAT, SOD, POD, and antioxidant activities |
Reduced browning index and weight loss Maintained colour, firmness, and overall quality of mushrooms | [86] |
Active Packaging | Applicable | Mechanism of Actions a | Preservation Effects b | Reference |
---|---|---|---|---|
Active coatings/films in a multilayer active packaging systems | ||||
Bilayer active packaging + MAP: gelatin with pomegranate peel powder coated on the polyethylene film | Pleurotus ostreatus | Increased antibacterial activity |
Increased the shelf-life of mushroom by 9 days compared to the control Inhibited bacterial growth Lowered weight loss Improved overall acceptability | [114] |
Collagen and carboxymethyl cellulose active coatings with plasma modification of LDPE | Agaricus bisporus |
0.5% Collagen and 1.0% carboxymethyl cellulose Effectively inhibited polyphenol oxidase and β-1,3-glucanase activity Modified the gas composition in the package (carbon dioxide: 10%–15% and oxygen: 8%–15%) Increase catalase activity Reduced respiration rate |
Inhibited browning Maintained structural integrity Extended shelf life from 7 to 21 days | [113] |
Zeolite aҫai extract coating with MAP (5% CO2, 80% O2, 15% N2) | Agaricus bisporus |
Significantly increased antioxidant activity Inhibited the deterioration of mushroom quality |
slowed water loss, and slowed the browning process Increased bioactive compounds and ascorbic acid content Extended shelf life to 28 days | [112] |
Active ingredients in a biodegradable polyemeric matrix | ||||
PLA/PCL-antimicrobial | Agaricus bisporus | Significantly decreased the CO2 concentration and microbial counts |
Preserved firmness, colour, overall quality, and market acceptability of mushrooms for a 12-day storage period | [99] |
PLA-0.5% nisin antimicrobial polypeptide | Boletus edulis | Reduced polyphenol oxidase activity and total bacteria count |
Maintained quality by reducing changes in texture and sensory attributes Shelf life of 18 days with 7.5 and 15 wt.% plasticizer PLA film | [100] |
Chitosan-baicalin-liposomes-polyvinyl alcohol | Agaricus bisporus | Exhibited high antibacterial activity on Escherichia coli and Staphylococcus aureus |
Inhibited weight loss Reduced browning and rancidity Minimized bacterial growth Maintained nutrients of mushrooms | [103] |
Glutenin-tamarind gum-melatonin | Agaricus bisporus |
Improved mechanical, barrier and thermal properties Decreased polyphenol oxidase activity, respiratory rate, H2O2, and O2− levels Maintained high antioxidant enzyme activities |
Maintained colour and hardness Increased ascorbic acid and glutathione content Maintained quality Delayed senescence | [121] |
Active ingredients in edible coatings polymeric matrix | ||||
Gallic acid-chitosan | Agaricus bisporus |
Increased the activities of superoxide dismutase and catalase Reduced respiration rate and polyphenol oxidase activity | Maintained mushroom quality by reducing the browning degree, O2−, malondialdehyde content, H2O2, and rate of electrolyte leakage | [93] |
Chitosan-tripolyphosphate nanoaggregates | Agaricus bisporus |
Exhibited a significant reduction in polyphenol oxidase activity Increased the antioxidant capacity |
Reduced the browning index Preserved ascorbic acid and firmness Increased phenolic compounds | [101] |
Nano Packaging | Applicable | Mechanism of Action a | Preservation Effects b | References |
---|---|---|---|---|
PE/PP-Ag nanoparticles | Agaricus bisporus |
Delayed respiration rate Inhibited bacterial growth Inhibited ROS accumulation Increased SOD and CAT activity Reduced reactive oxygen species |
Maintained sensory quality and firmness Reduced weight loss and browning Extended shelf-life from 8 to 10 days | [53] |
PE- Nano masterbatch composite | Flammulina velutipes | Delayed ATP content decline Inhibited carbohydrate metabolism Reduced energy metabolism | Maintained post-harvest quality | [127] |
PVA-Nano-SiO2:nano-TiO2 | Agaricus bisporus |
Reduced the rate of respiration Decreased bacteria counts Increased antimicrobial activity Effectively controlled the level of O2 and CO2 | Maintained pH, colour, total phenol content, and ascorbic acid content | [132] |
PE- Nano Ag:TiO2 | Agaricus bisporus |
Inhibited glutathione activity Reduced bacterial counts and rate of respiration | Maintained ascorbic acid content | [130] |
PE- Nano Ag:TiO2:attapulgite:SiO2 | Flammulina velutipes |
Significantly reduced bacterial count Increased SOD, CAT, and POD activities Decreased MDA and tyrosinase activity |
Nanoparticles enhanced the umami flavour Increased accumulation of phenolic compounds | [127,135,136,137] |
Chitosan nanoparticle -Cajuput essential oil | Agaricus bisporus | Decreased respiration rate Increased antioxidant activity | Maintained firmness and colour Extended shelf life | [28] |
Chitosan-nano-SiO2:1% nisin | Agaricus bisporus |
Increased antimicrobial activity Reduced polyphenol oxidase activity |
Reduced weight loss Maintained colour, pH, and total soluble solids | [138] |
1-MCP: nano-packaging, 4 °C, RH 90%–95% | Pleurotus eryngii | Decreased respiration rateEnhanced antioxidant activity Increased PPO, SOD, and CAT activities | Maintained texture Improved soluble proteins | [27] |
Chitosan-acetic acid: glycerol: SiO2 nanoparticles | Agaricus bisporus |
Reduced peroxidase activity Increased superoxide dismutase and catalase activities Increased antioxidant activity Reduced respiration rate |
Prolonged shelf life to 12 days. Increased total phenol content Maintained overall quality | [139] |
PLA-nanoTiO2 | Lentinus edodes Agaricus bisporus |
Inhibited microbial activity Reduced respiratory rate |
Decreased reducing sugars Reduced vitamin C content | [140] |
Modified Atmosphere Packaging | Applicable | Mechanism of Action a | Preservation Effects b | Reference |
---|---|---|---|---|
PE/PA-calcium chloride-citric acid/10% O2, 5%CO2/
5%O2, 10% CO2 | Pleurotus florida |
Significantly decreased respiration rate Increased radical scavenging activity |
10% O2 and 5% CO2: retained quality, received higher sensory ratings and storage life of 25 days Lowered the changes in weight, pH and TSS, and total polyphenol contents | [143] |
Polyvinyl chloride-polyethylene-silicon window | Pine-mushrooms |
Lowered respiratory rate Increased CAT activity |
Delayed texture and flavour changes, reduced browning and
weight loss, delayed senescence Decreased ammonia content | [144] |
Biorientated polypropylene-gamma irradiation | Lentinula edodes |
Decreased respiratory rate Significantly decreased microbial count Increased antioxidant ability Reduced microbial activity |
Increased total sugar content Lowered the accumulation levels of malondialdehyde Promoted phenolic compounds | [145] |
High CO2 (20% CO2 + 15% O2)
Low CO2 (30% O2 + 2% CO2) High N2 (85% N2, 15% O2) Low O2 (2% O2 + 30% CO2), at 4 °C, 95% RH | Pleurotus eryngii | Optimised rate of respiration attained with 20% CO2 + 15% O2 |
High total phenolic content Reduced browning Shelf life of 10 days | [146] |
Cellophane film-CO2 scavenger | Agaricus bisporus | Equilibrium gas composition of 3.6% O2 and 11.5% CO2 attained | Maintained weight loss, pH, firmness and colour | [142] |
50% CO2:50% N2 70% CO2:30% O2 50% CO2:50% O2, at 4 °C | Crassostrea plicatula |
Improved beneficial bacterial diversity Optimized condition CO2:O2 (70%:30%) | Reduced microbial growth | [147] |
Chitosan-nanopackaging-10% O2 10% CO2 | Agaricus bisporus | Reduced respiration rate | Minimized changes in quality | [148] |
CO2:20% O2 (applied at 2 h; 12 h and 22 h) |
Agaricus bisporus Pleurotus ostreatus |
Optimized process attained at 12 h CO2 treatment Inhibited physiological processes | Maintained quality | [149] |
Alginate coating-high O2 | Lentinus edodes |
Alginate coating (2%) + 100% O2: Reduced microbial count Inhibited the activity of PPO and POD |
Maintained firmness Delayed browning, cap opening, changes in soluble solids, total sugars, and ascorbic acid Shelf life of 16 days | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shonte, T.T.; Mulla, M.F.; Foley, L.; Pathania, S. Mechanisms of Action and Preservation Effects of Packaging Systems for Mushrooms: Novel Approaches to Preserve Irish Edible Mushrooms. Coatings 2024, 14, 172. https://doi.org/10.3390/coatings14020172
Shonte TT, Mulla MF, Foley L, Pathania S. Mechanisms of Action and Preservation Effects of Packaging Systems for Mushrooms: Novel Approaches to Preserve Irish Edible Mushrooms. Coatings. 2024; 14(2):172. https://doi.org/10.3390/coatings14020172
Chicago/Turabian StyleShonte, Tigist Tadesse, Mehraj Fatema Mulla, Lorraine Foley, and Shivani Pathania. 2024. "Mechanisms of Action and Preservation Effects of Packaging Systems for Mushrooms: Novel Approaches to Preserve Irish Edible Mushrooms" Coatings 14, no. 2: 172. https://doi.org/10.3390/coatings14020172
APA StyleShonte, T. T., Mulla, M. F., Foley, L., & Pathania, S. (2024). Mechanisms of Action and Preservation Effects of Packaging Systems for Mushrooms: Novel Approaches to Preserve Irish Edible Mushrooms. Coatings, 14(2), 172. https://doi.org/10.3390/coatings14020172