Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Liquid Feedstock Plasma Spraying
2.3. Laser Processing
2.4. Characterization
3. Results and Discussion
3.1. Laser-Processed Zone Morphology and Geometry
3.2. Elemental Distribution
4. Conclusions
- Laser processing resulted in the surface smoothening of the LTO plasma-sprayed coating layer. Additionally, the use of laser power led to the formation of lake-shaped melted regions, contributing to surface smoothing.
- The effect of changes in laser power on the width of laser-processed lines and the percentage of melted zones was significantly higher than the effect of changes in laser processing speed.
- While the differences in the chemical composition of the coating before and after laser processing were not significant, there was a noticeable increase in oxygen content in the laser-processed regions of the LTO coating. This can be attributed to laser irradiation and the substantial heat input.
- A localized higher concentration of light elements such as oxygen was noted in the lake-shaped melted zones after laser processing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Pacala, S.; Socolow, R. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Kammampata, S.P.; Garakani, M.A.; Zhang, Z.; Thangadurai, V. Solid-state electrolytes for lithium-ion batteries. In Comprehensive Inorganic Chemistry III; Elsevier: Amsterdam, The Netherlands, 2023; pp. 658–680. [Google Scholar] [CrossRef]
- Kurzweil, P.; Garche, J. Overview of batteries for future automobiles. In Lead-Acid Batteries for Future Automobiles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–96. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lu, G.; Li, W.; Tao, Q.; Shi, C.; Jin, H.; Chen, G.; Wang, S. Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives. Front. Mater. 2020, 7, 111. [Google Scholar] [CrossRef]
- Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C.; Casas-Cabanas, M.; Aguesse, F. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. J. Power Sources 2021, 502, 229919. [Google Scholar] [CrossRef]
- Pasta, M.; Armstrong, D.; Brown, Z.L.; Bu, J.; Castell, M.R.; Chen, P.; Cocks, A.; Corr, S.A.; Cussen, E.J.; Darnbrough, E.; et al. 2020 roadmap on solid-state batteries. J. Phys. Energy 2020, 2, 032008. [Google Scholar] [CrossRef]
- Yang, Y. A mini-review: Emerging all-solid-state energy storage electrode materials for flexible devices. Nanoscale 2020, 12, 3560–3573. [Google Scholar] [CrossRef] [PubMed]
- McOwen, D.W.; Xu, S.; Gong, Y.; Wen, Y.; Godbey, G.L.; Gritton, J.E.; Hamann, T.R.; Dai, J.; Hitz, G.T.; Hu, L.; et al. 3D-Printing Electrolytes for Solid-State Batteries. Adv. Mater. 2018, 30, e1707132. [Google Scholar] [CrossRef] [PubMed]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Takahashi, M.; Terauchi, Y.; Kobayashi, Y.; Ikeda, S.; Sakuda, A. Fabrication of composite positive electrode sheet with high active material content and effect of fabrication pressure for all-solid-state battery. J. Ceram. Soc. Jpn. 2017, 125, 391–395. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, e1705702. [Google Scholar] [CrossRef]
- Zaman, W.; Hatzell, K.B. Processing and manufacturing of next generation lithium-based all solid-state batteries. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101003. [Google Scholar] [CrossRef]
- Lobe, S.; Bauer, A.; Uhlenbruck, S.; Fattakhova-Rohlfing, D. Physical Vapor Deposition in Solid-State Battery Development: From Materials to Devices. Adv. Sci. 2021, 8, 2002044. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, E.M.; Barry, S.J.; Jung, H.-K.; Rondinelli, J.M.; Vaughey, J.T.; Poeppelmeier, K.R. Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties. Chem. Mater. 2005, 18, 482–489. [Google Scholar] [CrossRef]
- Moradi, M.; Hasani, A.; Pourmand, Z.; Lawrence, J. Direct laser metal deposition additive manufacturing of Inconel 718 superalloy: Statistical modelling and optimization by design of experiments. Opt. Laser Technol. 2021, 144, 107380. [Google Scholar] [CrossRef]
- Moradi, M.; Hasani, A.; Beiranvand, Z.M.; Ashoori, A. Additive manufacturing of stellite 6 superalloy by direct laser metal deposition—Part 2: Effects of scanning pattern and laser power reduction in differrent layers. Opt. Laser Technol. 2020, 131, 106455. [Google Scholar] [CrossRef]
- Moradi, M.; Pourmand, Z.; Hasani, A.; Moghadam, M.K.; Sakhaei, A.H.; Shafiee, M.; Lawrence, J. Direct laser metal deposition (DLMD) additive manufacturing (AM) of Inconel 718 superalloy: Elemental, microstructural and physical properties evaluation. Optik 2022, 259, 169018. [Google Scholar] [CrossRef]
- Han, Q.; Jiao, Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting. Int. J. Adv. Manuf. Technol. 2019, 102, 3315–3324. [Google Scholar] [CrossRef]
- Stutzman, A.; Rai, A.; Alexandreanu, B.; Albert, P.; Sun, E.; Schwartz, M.; Reutzel, E.; Tressler, J.; Medill, T.; Wolfe, D. Laser glazing of cold sprayed coatings for the mitigation of stress corrosion cracking in light water reactor (LWR) applications. Surf. Coat. Technol. 2020, 386, 125429. [Google Scholar] [CrossRef]
- Suder, W.J.; Williams, S.W. Investigation of the effects of basic laser material interaction parameters in laser welding. J. Laser Appl. 2012, 24, 032009. [Google Scholar] [CrossRef]
- Semnani, D. Geometrical characterization of electrospun nanofibers. In Electrospun Nanofibers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151–180. [Google Scholar] [CrossRef]
- Ganvir, A. Design of Suspension Plasma Sprayed Thermal Barrier Coatings; University West: Trollhättan, Sweden, 2018. [Google Scholar]
- Ganvir, A.; Calinas, R.F.; Markocsan, N.; Curry, N.; Joshi, S. Experimental visualization of microstructure evolution during suspension plasma spraying of thermal barrier coatings. J. Eur. Ceram. Soc. 2019, 39, 470–481. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L. Effects of laser scanning speed on surface roughness and mechanical properties of aluminum/Polylactic Acid (Al/PLA) composites parts fabricated by fused deposition modeling. Polym. Test. 2020, 91, 106785. [Google Scholar] [CrossRef]
- Chen, T.; Gong, B.; Tang, C. Origin and Evolution of Cracks in the Glaze Surface of a Ceramic during the Cooling Process. Materials 2023, 16, 5508. [Google Scholar] [CrossRef]
- Su, H.; Liu, H.; Jiang, H.; Shen, Z.; Chen, Q.; Yu, M.; Zhao, D.; Li, X.; Dong, D.; Zhang, Z. One-step preparation of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics with large size and irregular shape by directed energy deposition. Addit. Manuf. 2023, 70, 103563. [Google Scholar] [CrossRef]
- Liu, H.; Su, H.; Shen, Z.; Zhao, D.; Liu, Y.; Guo, M.; Guo, Y.; Zhang, J.; Liu, L.; Fu, H. Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting. Ceram. Int. 2019, 45, 17252–17257. [Google Scholar] [CrossRef]
- Liu, H.; Su, H.; Shen, Z.; Wang, E.; Zhao, D.; Guo, M.; Zhang, J.; Liu, L.; Fu, H. Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: Microstructure evolutions. J. Eur. Ceram. Soc. 2018, 38, 5144–5152. [Google Scholar] [CrossRef]
- Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; Poprawe, R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012, 60, 3849–3860. [Google Scholar] [CrossRef]
- Triantafyllidis, D.; Li, L.; Stott, F. Mechanisms of porosity formation along the solid/liquid interface during laser melting of ceramics. Appl. Surf. Sci. 2003, 208–209, 458–462. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, T.; Li, R.; Tang, J.; Wang, G.; Guo, K. Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors. Mater. Sci. Eng. A 2017, 707, 443–451. [Google Scholar] [CrossRef]
- Arshad, A.; Yajid, M.A.M.; Daroonparvar, M.; Idris, M.H.; Zulkifli, I.S.M.; Hassan, A.G.; Halim, Z.A.A. Effect of Laser-Glazed Treatment on Thermal Cyclic Behavior of Plasma-Sprayed Lanthanum Zirconate/Yttria-Stabilized Zirconia Double Ceramic Layered on NiCoCrAlYTa-coated Inconel. J. Therm. Spray Technol. 2023, 32, 2603–2619. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Chen, K.; Chen, Y.; Jiang, Z.; Song, Y. Microstructure evolution of ceramic materials during solidification from melts in high-gravity combustion synthesis. Mater. Res. Bull. 2012, 47, 222–234. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Yang, W. Enhancements of the structures and electrochemical performances of Li4Ti5O12 electrodes by doping with non-metallic elements. Electrochim. Acta 2022, 409, 139993. [Google Scholar] [CrossRef]
Element | Li | Ti | O | Cl, Si, Al |
---|---|---|---|---|
LTO powder (wt.%) | not detectable | 54.4 | 45.2 | 0.4 |
Suspension Feed (mL/min) | Total Gas Flow (L/min) | Power (kW) | Enthalpy (kJ) | Number of Passes |
---|---|---|---|---|
42 | 200 | 110 | 11 | 20 |
Laser YLS-10000-SM Class 4 | PRECITEC Optical Head YW52 | ||
---|---|---|---|
Operating Wavelength (nm) | 1070 ± 10 | Focal length collimation (mm) | 200 |
Mode of Operation | CW | Focal length focusing (mm) | 400 |
Modulation Frequency (kHz) | 0–5 | Magnification multiplier | 2 |
Power Tunability, % | 10–100 | Beam diameter (µm) | 400 |
Power Stability, % | 2 | Rayleigh length (mm) | 207.7 |
Laser Power [min–max] (kW) | 0.08–10 | Processing speed [min–max] (mm/s) | [0–50] (With robot) |
Fiber Core Diameter, (µm) | 200 (multi-mode) |
Lines/Codes | Laser Power (W) | Process Speed (mm/s) | Energy Input (J/mm2) | |
---|---|---|---|---|
a (line 1) | 200 | 0.25 | 1019.1 | |
b | 200 | 0.5 | 509.5 | |
c | 200 | 1 | 254.8 | |
d | 200 | 4 | 63.7 | |
e | 200 | 16 | 15.9 | |
f (line 2) | 200 | 50 | 5.1 | |
g | 80 | 0.125 | 815.5 | |
h (line 3) | 80 | 0.25 | 407.6 | |
i | 80 | 0.5 | 203.8 | |
j | 80 | 1 | 101.9 | |
k | 80 | 2 | 50.9 | |
l | 80 | 4 | 25.5 | |
m | 80 | 8 | 12.7 | |
n | 80 | 16 | 6.4 | |
o | 80 | 32 | 3.2 | |
p (line 4) | 80 | 50 | 2.1 |
Ti (wt.%) | O (wt.%) | C (wt.%) | |||
---|---|---|---|---|---|
Non-laser-processed (As-sprayed area) | Spectrum 14 | 59.5 | 35.6 | 3.3 | |
Laser-processed area | Spectrum 12 | 55 | 37.8 | 6.5 | |
Lake-shape melted zones | Spectrum 1 | 51 | 39.5 | 9.5 | |
Spectrum 3 | 52 | 38.2 | 9.8 | ||
Spectrum 6 | 55.2 | 35.1 | 9.7 | ||
Spectrum 7 | 56.1 | 36.5 | 7.4 | ||
Spectrum 9 | 55.3 | 35.6 | 8.5 | ||
Spectrum 11 | 53.3 | 37.6 | 8.7 | ||
Average composition | 53.8 | 37.1 | 8.9 | ||
Non-melted zones | Spectrum 2 | 54.6 | 41.8 | 3.6 | |
Spectrum 4 | 54.8 | 39.2 | 6 | ||
Spectrum 5 | 54 | 39.8 | 6.2 | ||
Spectrum 8 | 55.3 | 38.8 | 6 | ||
Average composition | 54.7 | 39.9 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasani, A.; Luya, M.; Kamboj, N.; Nayak, C.; Joshi, S.; Salminen, A.; Goel, S.; Ganvir, A. Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode. Coatings 2024, 14, 224. https://doi.org/10.3390/coatings14020224
Hasani A, Luya M, Kamboj N, Nayak C, Joshi S, Salminen A, Goel S, Ganvir A. Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode. Coatings. 2024; 14(2):224. https://doi.org/10.3390/coatings14020224
Chicago/Turabian StyleHasani, Arman, Mathis Luya, Nikhil Kamboj, Chinmayee Nayak, Shrikant Joshi, Antti Salminen, Sneha Goel, and Ashish Ganvir. 2024. "Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode" Coatings 14, no. 2: 224. https://doi.org/10.3390/coatings14020224
APA StyleHasani, A., Luya, M., Kamboj, N., Nayak, C., Joshi, S., Salminen, A., Goel, S., & Ganvir, A. (2024). Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode. Coatings, 14(2), 224. https://doi.org/10.3390/coatings14020224