Laser–Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy
Abstract
:1. Introduction
2. Raw Materials and Methods
2.1. Raw Materials
2.2. Experimental Methods
2.3. Surface Characterizations
2.4. Electrochemical Tests
2.5. Antibacterial Tests
3. Results and Discussion
3.1. Surface Structure
3.2. Surface Chemistry
3.3. Surface Wettability
3.4. Corrosion Resistance
3.5. Antibacterial Property
4. Conclusions
- Laser surface structuring was used to generate dual-scale micro/nanostructures on the surface of a Mg alloy specimen due to the strong ablation and evaporation in laser–material interaction.
- The stearic acid immersion improved the deposition and bonding of long-chain molecules on the surface of Mg alloy specimens in the stearic acid and reduced the surface energy significantly.
- By incorporating the effect of dual-scale micro/nanostructures, the superhydrophilicity on the surface could be transited into superhydrophobicity via sequential chemical immersion.
- Compared with that of the untreated specimen, the corrosion resistance of laser–chemical-treated specimen was enhanced significantly, which was attributed to its superhydrophobicity in that the structure-induced air layer prevented the direct contact of corrosive ions with the surface of the specimen.
- The proposed laser–chemical surface treatment also strengthened the antibacterial performance of the Mg alloy specimen greatly, and the antibacterial rate was as high as 82.05%, mainly owing to the air pockets in the structured surface restraining the penetration of bacterial fluid.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sezer, N.; Evis, Z.; Murat, S.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloys 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef]
- Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.; Kaese, V.; Pisch, A.; Beckmann, F.; Windhagen, H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006, 27, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Castellani, C.; Lindtner, R.A.; Hausbrandt, P.; Tschegg, E.; Stanzl-Tschegg, S.E.; Zanoni, G.; Beck, S.; Weinberg, A.M. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011, 7, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, N.T.; Lespagnol, J.; Birbilis, N.; Staiger, M.P. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2010, 52, 287–291. [Google Scholar] [CrossRef]
- Liu, H.; Tong, Z.; Gu, J.; Yang, D.; Liu, C.; Wang, X.; Ren, X. Effect of laser surface texturing depth and pattern on the bond strength and corrosion performance of phosphate conversion coating on magnesium alloy. Opt. Laser Technol. 2022, 153, 108164. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Domantovsky, A.G.; Kaminsky, V.V.; Pytskii, I.S.; Emelyanenko, K.A.; Boinovich, L.B. The mechanisms of antibacterial activity of magnesium alloys with extreme wettability. Materials 2021, 14, 5454. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zeng, X.; Yuan, G. Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy. Mater. Lett. 2008, 62, 4325–4327. [Google Scholar] [CrossRef]
- Hollstein, F.; Wiedemann, R.; Scholz, J. Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surf. Coat. Technol. 2003, 162, 261–268. [Google Scholar] [CrossRef]
- Christoglou, C.; Voudouris, N.; Angelopoulos, G.N.; Pant, M.; Dahl, W. Deposition of aluminium on magnesium by a CVD process. Surf. Coat. Technol. 2004, 184, 149–155. [Google Scholar] [CrossRef]
- Tan AL, K.; Soutar, A.M.; Annergren, I.F.; Liu, Y.N. Multilayer sol-gel coatings for corrosion protection of magnesium. Surf. Coat. Technol. 2005, 198, 478–482. [Google Scholar] [CrossRef]
- Huo, H.; Li, Y.; Wang, F. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros. Sci. 2004, 46, 1467–1477. [Google Scholar] [CrossRef]
- Guo, L.; Gu, C.; Zhang, J.; Wang, X.; Wang, K.; Jin, Y.; Tu, J. A black conversion coating produced by hot corrosion of magnesium with deep eutectic solvent membrane. Surf. Coat. Technol. 2019, 357, 833–840. [Google Scholar] [CrossRef]
- Chiu, K.Y.; Wong, M.H.; Cheng, F.T.; Man, H.C. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coat. Technol. 2007, 202, 590–598. [Google Scholar] [CrossRef]
- Cui, X.; Lin, X.; Liu, C.; Yang, R.; Zheng, X.; Gong, M. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros. Sci. 2015, 90, 402–412. [Google Scholar] [CrossRef]
- Duan, H.; Du, K.; Yan, C.; Wang, F. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim. Acta 2006, 51, 2898–2908. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Plekhova, N.G.; Gnedenkov, S.V. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. J. Magnes. Alloys 2022, 10, 3589–3611. [Google Scholar] [CrossRef]
- Mehrjou, B.; Dehghan-Baniani, D.; Shi, M.; Shanaghi, A.; Wang, G.; Liu, L.; Qasim, A.M.; Chu, P.K. Nanopatterned silk-coated AZ31 magnesium alloy with enhanced antibacterial and corrosion properties. Mater. Sci. Eng. C 2020, 116, 111173. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-H.; Wang, J.; Cui, L.-Y.; Zeng, R.-C.; Wang, Q.-Z.; Han, Q.-X.; Qiu, J.; Chen, X.-B.; Chen, D.-C.; Guan, S.-K.; et al. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomater. 2019, 98, 196–214. [Google Scholar] [CrossRef]
- Tamurejo-Alonso, P.; Luisa González-Martín, M.; Pacha-Olivenza, M.A. Coating of a biodegradable magnesium alloy for rapid action against S. aureus after ultraviolet exposition. Appl. Surf. Sci. 2023, 613, 156006. [Google Scholar]
- Gao, Z.; Song, M.; Liu, R.-L.; Shen, Y.; Ward, L.; Cole, I.; Chen, X.-B.; Liu, X. Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga. Mater. Sci. Eng. C 2019, 104, 109926. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, M.-C.; Yang, Y.; Tan, L.; Zhao, Y.-C.; Yin, D.-F. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corros. Sci. 2019, 156, 125–138. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Huo, L.; Liu, J.; Bai, Z. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect. Surf. Interfaces 2023, 37, 102691. [Google Scholar] [CrossRef]
- Wang, L.; Yin, K.; Deng, Q.; Huang, Q.; He, J.; Duan, J. Wetting Ridge-Guided Directional Water Self-Transport. Adv. Sci. 2022, 9, 2204891. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, H. Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities. J. Cent. South Univ. 2022, 29, 3217–3247. [Google Scholar] [CrossRef]
- Kozera, R.; Przybyszewski, B.; Krawczyk, Z.D.; Boczkowska, A.; Sztorch, B.; Przekop, R.E.; Barbucha, R.; Tański, M.; Casas, X.G.; Borras, A. Hydrophobic and anti-icing behavior of uv-laser-treated polyester resin-based gelcoats. Processes 2020, 8, 1642. [Google Scholar] [CrossRef]
- Ahuir-Torres, J.I.; Kotadia, H.R.; Öpoz, T.T.; Sharp, M.C. A Study on the Corrosion Behaviour of Laser Textured Pure Aluminium in Saltwater. Processes 2023, 11, 721. [Google Scholar] [CrossRef]
- Liu, H.; Tong, Z.; Yang, Y.; Zhou, W.; Chen, J.; Pan, X.; Ren, X. Preparation of phosphate conversion coating on laser surface textured surface to improve corrosion performance of magnesium alloy. J. Alloys Compd. 2021, 865, 158701. [Google Scholar] [CrossRef]
- Ma, C.; Peng, G.; Nie, L.; Liu, H.; Guan, Y. Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement. Appl. Surf. Sci. 2018, 445, 211–216. [Google Scholar] [CrossRef]
- Liang, M.; Yuan, Y.; Li, X.; Cheng, J.; Zhang, X.; Zhang, K.; You, R. Enhanced corrosion resistance of Mg and Mg alloys with fs-laser printed hydrophobic and periodically microrippled surface for armor application. Appl. Surf. Sci. 2023, 639, 158156. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, Q.; Hu, J. Response surface and corrosion behavior analysis of nanosecond laser patterned ZK60A magnesium alloy. Opt. Laser Technol. 2022, 145, 107501. [Google Scholar] [CrossRef]
- Pacha-Olivenza, M.A.; Galván, J.C.; Porro, J.A.; Lieblich, M.; Díaz, M.; Angulo, I.; Cordovilla, F.; García-Galván, F.R.; Fernández-Calderón, M.C.; González-Martín, M.L.; et al. Efficacy of laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response. Surf. Coat. Technol. 2020, 384, 125320. [Google Scholar] [CrossRef]
- Cai, Q.; Xu, J.; Lian, Z.; Yu, Z.; Yu, H.; Li, J. Superhydrophobic magnesium alloy surface with corrosion resistance. In Proceedings of the IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, 3M-NANO 2021—Proceedings, Xi’an, China, 2–6 August 2021; pp. 328–331. [Google Scholar]
- Emelyanenko, K.A.; Chulkova, E.V.; Semiletov, A.M.; Domantovsky, A.G.; Palacheva, V.V.; Emelyanenko, A.M.; Boinovich, L.B. The Potential of the Superhydrophobic State to Protect Magnesium Alloy against Corrosion. Coatings 2022, 12, 74. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Kaminsky, V.V.; Pytskii, I.S.; Emelyanenko, K.A.; Domantovsky, A.G.; Chulkova, E.V.; Shiryaev, A.A.; Aleshkin, A.V.; Boinovich, L.B. Antimicrobial activity and degradation of superhydrophobic magnesium substrates in bacterial media. Metals 2021, 11, 1100. [Google Scholar] [CrossRef]
- Furlan, V.; Biondi, M.; Demir, A.G.; Pariani, G.; Previtali, B.; Bianco, A. Sub-micrometric surface texturing of AZ31 Mg-alloy through two-beam direct laser interference patterning with a ns-pulsed green fiber laser. Appl. Surf. Sci. 2017, 423, 619–629. [Google Scholar] [CrossRef]
- Khadka, I.; Castagne, S.; Wang, Z.; Zheng, H. Surface structure formation in WE54 Mg alloy subjected to ultrafast laser texturing. J. Laser Appl. 2016, 28, 022504. [Google Scholar] [CrossRef]
- Samanta, A.; Wang, Q.; Shaw, S.K.; Ding, H. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Mater. Des. 2020, 192, 108744. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Y.; Wu, P.; Qu, C.; Wang, H. Effect of Laser Surface Structuring on Surface Wettability and Tribological Performance of Bulk Metallic Glass. Crystals 2022, 12, 748. [Google Scholar] [CrossRef]
- Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.; Šetina-Batič, B.; Hočevar, M.; Šetina-Batič, B.; Hočevar, M. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences. Appl. Phys. A 2017, 123, 766. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Luo, D.; Liu, Y.; Han, Z.; Ren, L. Corrosion resistance controllable of biomimetic superhydrophobic microstructured magnesium alloy by controlled adhesion. Surf. Coat. Technol. 2018, 347, 173–180. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Gao, J.; Gao, M.; Wang, X.; Li, B.; Liu, J. Study on the preparation and stearic acid modification of hydrophobic Ni625 laser cladding coating. Mater. Lett. 2023, 346, 134526. [Google Scholar] [CrossRef]
- Yayoglu, Y.E.; Toomey, R.G.; Crane, N.B.; Gallant, N.D. Laser machined micropatterns as corrosion protection of both hydrophobic and hydrophilic magnesium. J. Mech. Behav. Biomed. Mater. 2022, 125, 104920. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ma, B.; Yang, Y.; Li, L.; Li, X. Femtosecond Laser Preparation of Terracotta Warrior-like Pit Superhydrophobic Structure on Magnesium Alloy with Mechanical Durability and Corrosion Resistance. Langmuir 2023, 39, 10230–10239. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Tan, X.; Zhang, Z.; Jiang, Z.; Lian, J.; Wen, C.; Ren, L. Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability. Appl. Surf. Sci. 2022, 575, 151596. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Jiang, Z.; Li, Y.; Wen, C.; Zhang, D.; Lian, J.; Zhang, Z. Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment. Corros. Sci. 2021, 180, 109186. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, J.; Qi, H.; Yu, J.; Guo, Z.; Ma, Y. Laser-chemical Treated Superhydrophobic Surface as a Barrier to Marine Atmospheric Corrosion. Surf. Coat. Technol. 2020, 401, 126255. [Google Scholar] [CrossRef]
- Chui, P.; Jing, R.; Zhang, F.; Li, J.; Feng, T. Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. J. Alloys Compd. 2020, 842, 155693. [Google Scholar] [CrossRef]
- Xue, X.; Lu, L.; He, D.; Guan, Y.; Li, Y. Antibacterial properties and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface with Ag microparticles by laser treatment. Surf. Coat. Technol. 2021, 425, 127716. [Google Scholar] [CrossRef]
- Tong, W.; Karthik, N.; Li, J.; Wang, N.; Xiong, D. Superhydrophobic Surface with Stepwise Multilayered Micro- And Nanostructure and an Investigation of Its Corrosion Resistance. Langmuir 2019, 35, 15078–15085. [Google Scholar] [CrossRef]
- Nahum, E.Z.; Lugovskoy, A.; Lugovskoy, S.; Sobolev, A. Synthesis of Titanium Oxide Nanotubes Loaded with Hydroxyapatite. Nanomaterials 2023, 13, 2743. [Google Scholar] [CrossRef] [PubMed]
- Atrens, A.; Chen, X.; Shi, Z. Mg Corrosion—Recent Progress. Corros. Mater. Degrad. 2022, 3, 566–597. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Chen, X.; Atrens, A. Anodic hydrogen evolution on Mg. J. Magnes. Alloys 2021, 9, 2049–2062. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Sun, Z.; Ren, L.; Yang, K. Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism. Mater. Sci. Eng. C 2018, 93, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Yuan, H.; Zhu, X.; Zhang, T.; Liu, Z.; Wang, C. Fabrication of antibacterial Zr-BMG biomimetic surfaces by femtosecond laser. Surf. Interfaces 2023, 37, 102740. [Google Scholar] [CrossRef]
- Jalil, S.A.; Akram, M.; Bhat, J.A.; Hayes, J.J.; Singh, S.C.; El Kabbash, M.; Guo, C. Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses. Appl. Surf. Sci. 2020, 506, 144952. [Google Scholar] [CrossRef]
- Lutey AH, A.; Gemini, L.; Romoli, L.; Lazzini, G.; Fuso, F.; Faucon, M.; Kling, R. Towards laser-textured antibacterial surfaces. Sci. Rep. 2018, 8, 10112. [Google Scholar] [CrossRef]
- Schwibbert, K.; Richter, A.M.; Krüger, J.; Bonse, J. Laser-Textured Surfaces: A Way to Control Biofilm Formation? Laser Photonics Rev. 2023, 18, 2300753. [Google Scholar] [CrossRef]
Element | Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
wt.% | 2.960 | 0.5200 | 0.310 | 0.160 | 0.003 | 0.006 | 0.001 | Bal. |
Sample No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Average power (W) | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 |
Repetition rate (kHz) | 40 | 40 | 40 | 40 | 40 |
Pulse width (ns) | 12 | 12 | 12 | 12 | 12 |
Scanning speed (mm/s) | 50 | 100 | 20 | 20 | 20 |
Step size (µm) | 150 | 150 | 150 | 100 | 200 |
Power intensity (GW/cm2) | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Pulse energy (mJ) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Sample Type | Corrosion Potential, Ecorr (mv) | Current Density, jcorr (A/cm2) | Corrosion Rate (mm/a) |
---|---|---|---|
Untreated | −1397.5 | 0.015 | 179.81 |
SHL-150 | −1469.7 | 0.038 | 446.8 |
SHB-150 | −898.5 | 8.3 × 10−5 | 0.9728 |
SHB-200 | −880.1 | 8.7 × 10−5 | 1.0399 |
Sample Type | Solution Resistance Rs (Ω·cm2) | Polarization Resistance Rp (Ω·cm2) | Double-Layer Capacitance Cdl (S·sn·cm−2) |
---|---|---|---|
Untreated | 1.9921 | 3.364 | 5.419 × 10−4 |
SHL-150 | 2.0388 | 3.1944 | 13.29 × 10−4 |
SHB-150 | 6.214 | 45.968 | 1.194 × 10−4 |
SHB-200 | 4.797 | 35.178 | 3.851 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Fu, J.; Liu, C.; Li, L.; Wang, H.; Zhang, M.; Ge, Z.; Zhang, T.; Wang, Q. Laser–Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy. Coatings 2024, 14, 287. https://doi.org/10.3390/coatings14030287
Xiong W, Fu J, Liu C, Li L, Wang H, Zhang M, Ge Z, Zhang T, Wang Q. Laser–Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy. Coatings. 2024; 14(3):287. https://doi.org/10.3390/coatings14030287
Chicago/Turabian StyleXiong, Wei, Jiajun Fu, Chao Liu, Li Li, Huixin Wang, Mingjun Zhang, Zhiqiang Ge, Tairui Zhang, and Qinghua Wang. 2024. "Laser–Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy" Coatings 14, no. 3: 287. https://doi.org/10.3390/coatings14030287
APA StyleXiong, W., Fu, J., Liu, C., Li, L., Wang, H., Zhang, M., Ge, Z., Zhang, T., & Wang, Q. (2024). Laser–Chemical Surface Treatment for Enhanced Anti-Corrosion and Antibacterial Properties of Magnesium Alloy. Coatings, 14(3), 287. https://doi.org/10.3390/coatings14030287