Repairing Performance of Polymer-Modified Cement-Based Thin Spray-On Liners on Pre-Cracked Rock-like Specimens
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Raw Materials
- Cement
- 2.
- Fillers
- 3.
- Admixtures
- 4.
- Vinyl acetate–ethylene copolymer emulsion (VAE)
- 5.
- Styrene propylene emulsion (SAE)
- 6.
- Polyvinyl alcohol powder (PVA)
2.2. Ratio of TSL
2.3. Preparation and Grouping of PR
2.4. Test Methods
- (1)
- TSL basic performance tests
- (2)
- Repair tests of TSL
3. Results and Discussion
3.1. Basic Performance of TSL
3.2. Compressive and Flexural Performance of PR-TSL
3.3. Comparative Analysis of Three TSLs’ Repair Performance
3.4. Correlation Analysis between Different Crack Angles and PTSL Repair Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Yu, H.; Wang, Y.; Cheng, W. Investigation of dust pollution control rules in tunnel excavation based on modularized airflow diverging system. Build. Environ. 2022, 221, 109356. [Google Scholar] [CrossRef]
- Yang, X.; Yu, H.; Zhao, J.; Cheng, W.; Xie, Y. Research on the coupling diffusion law of airflow-dust-gas under the modularized airflow diverging dust control technology. Powder Technol. 2022, 407, 117703. [Google Scholar] [CrossRef]
- Lian, X.; Zhang, Y.; Liu, J.; Deng, W.; Guo, J.; Cai, Y. Rules of overburden crack development in coal mining with different ratios of rock-soil strata conditions. Arab. J. Geosci. 2022, 15, 511. [Google Scholar] [CrossRef]
- Xu, J.; Pu, H.; Sha, Z. Full-Field Deformation and Crack Development Evolution of Red Sandstone under Impact and Chemical Erosion. Minerals 2022, 12, 1038. [Google Scholar] [CrossRef]
- Wu, G.; Sun, M.; Song, K.; Zhai, M. Analysis of crack development or closure state of soil overlying thin bedrock based on water flow measurement experiment. Arab. J. Geosci. 2022, 15, 1327. [Google Scholar] [CrossRef]
- Tripathi, R.; Hloch, S.; Chattopadhyaya, S.; Klichová, D.; Klich, J. Influence of frequency change during sandstone erosion by pulsed waterjet. Mater. Manuf. Process. 2020, 35, 187–194. [Google Scholar] [CrossRef]
- Lv, W.; Sun, C.; Shen, B. Experimental study on damage evolution and crack propagation characteristics of sand stone under combined stress state. J. Shandong Univ. Sci. Technol. (Nat. Sci. Ed.) 2020, 39, 37–45. [Google Scholar]
- Li, Y.; Yan, H.; Sun, S.; Zhang, L.; Zhang, S.; Li, Z. Experimental study on the expansion law and mechanical characteristics of crack propagation in rock with composite defect. J. Shandong Univ. Sci. Technol. (Nat. Sci. Ed.) 2022, 41, 42–50. [Google Scholar]
- Liu, Q.; Wang, Q.; Wu, P.; Wu, J.; Lv, X. Research progress in application of red mud in cementitious materials. J. Shandong Univ. Sci. Technol. (Nat. Sci. Ed.) 2022, 41, 66–74. [Google Scholar]
- Li, L.; Hagan, P.C.; Saydam, S.; Hebblewhite, B. Shear resistance contribution of support systems in double shear test. Tunn. Undergr. Space Technol. 2016, 56, 168–175. [Google Scholar] [CrossRef]
- Guner, D.; Ozturk, H. Experimental and modelling study on nonlinear time-dependent behaviour of thin spray-on liner. Tunn. Undergr. Space Technol. 2019, 84, 306–316. [Google Scholar] [CrossRef]
- Mpunzi, P.; Masethe, R.; Rizwan, M.; Stacey, T.R. Enhancement of the tensile strengths of rock and shotcrete by thin spray-on liners. Tunn. Undergr. Space Technol. 2015, 49, 369–375. [Google Scholar] [CrossRef]
- Tannant, D.D. Thin Spray-on Liners for Underground Rock Support. In Proceedings of the 17th International Mining Congress and Exhibition of Turkey-IMCET 2001, Ankara, Turkey, 19–22 June 2001. [Google Scholar]
- Li, Z.; Nocelli, B.; Saydam, S. Effect of rock strength and surface roughness on adhesion strength of thin spray-on liners. Int. J. Rock Mech. Min. Sci. 2017, 91, 195–202. [Google Scholar] [CrossRef]
- Qiao, Q.Q.; Nemcik, J.; Porter, I.; Baafi, E.; Zhang, Z.Y.; Shan, Z.J. Development of Testing Methods of Thin Spray-on Liner Shear-Bond Strength. In Proceedings of the ISRM Regional Symposium—EUROCK 2014, Vigo, Spain, 27–29 May 2014. [Google Scholar]
- Ozturk, H.; Tannant, D.D. Influence of rock properties and environmental conditions on thin spray-on liner adhesive bond. Int. J. Rock Mech. Min. Sci. 2011, 48, 1196–1198. [Google Scholar] [CrossRef]
- Qiao, Q.; Nemcik, J.; Porter, I.; Baafi, E. Laboratory investigation of support mechanism of thin spray-on liner for pillar reinforcement. Géotech. Lett. 2014, 4, 317–321. [Google Scholar] [CrossRef]
- Ozturk, H.; Tannant, D.D. Thin spray-on liner adhesive strength test method and effect of liner thickness on adhesion. Int. J. Rock Mech. Min. Sci. 2010, 47, 808–815. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Z.; Liu, G.; Cui, X.; Dong, Q.; Cao, H. Effects of substrate materials and liner thickness on the adhesive strength of the novel thin spray-on liner. Adv. Mech. Eng. 2020, 12, 1687814020904574. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, L.; Cheng, W.; Liu, Z.; Cui, X.; Liu, G.; Shi, Z.; Sun, Z.; Zhang, Y. Material Performance Tests of the Polymer-Cement Thin Spray-On Liner. Geofluids 2020, 2020, 6647363. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, X.; Liu, Z.; Cui, X.; Liu, G.; Zhou, Z.; Dong, Q. Synthesis and Properties of a Polymer-Modified Material for Thin Spray-On Liners in Mine Roadways. Adv. Mater. Sci. Eng. 2020, 2020, 9789051. [Google Scholar] [CrossRef]
- Huang, M.; Xiao, T. Mechanical and deformation properties of prefabricated monofissure-like rocks under uniaxial compression conditions. J. Chang. Univ. (Nat. Sci. Ed.) 2020, 17, 115–120. [Google Scholar]
- Wu, W.; He, G.; Chen, K.; Xue, Y.; Wang, C.; Wang, Y. Breakage test and analysis of rock specimens with non-coplanar intermittent fissures. Non-Ferr. Met. Eng. 2021, 11, 107–116. [Google Scholar]
- Liang, Q.; Cao, H. Mechanical characterization of single-fissure rocks under uniaxial compression. China Water Transp. (Second Half Mon.) 2021, 21, 151–153. [Google Scholar]
- Xing, Y. Study on the Properties and Mechanism of Cementitious Composites Modified by Polyvinyl Alcohol. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Zhu, M. Preparation and performance study of Styrene-acrylic emulsion modified cement repair mortar. Cem. Technol. 2011, 3, 31–33. [Google Scholar]
- Xie, Y.; Lin, X.; Li, H.; Ji, T. Effect of polyvinyl alcohol powder on the bonding mechanism of a new magnesium phosphate cement mortar. Constr. Build. Mater. 2020, 239, 117871. [Google Scholar] [CrossRef]
- Mei, J.; Li, H.; Xu, Z. Effect of Styrene-Acrylic Emulsion on Crack Resistance of Cement-Based Materials. Mater. Sci. Forum 2021, 1036, 288–300. [Google Scholar] [CrossRef]
- Cruz, E.O.; Radler, M.J.; Perello, M.; Savastano, H., Jr. Fiber cement boards modified with styrene-acrylic copolymer: An approach to address dimensional stability and cellulose fiber preservation. J. Compos. Mater. 2020, 55, 002199832095122. [Google Scholar] [CrossRef]
- Bai, E.-L. Tensile properties of a flexible polymer-cement composite containing portland cement and vae emulsion. Ceramics–Silikáty 2019, 64, 1–9. [Google Scholar] [CrossRef]
- Ohama, Y. Principle of Latex Modification and Some Typical Properties of Latex-Modified Mortars and Concretes Adhesion; Binders (materials); Bond (paste to aggregate); Carbonation; Chlorides; curing; diffusion. Materials 1987, 84, 511–518. [Google Scholar]
- Beeldens, A.; Van Gemert, D.; Schorn, H.; Ohama, Y.; Czarnecki, L. From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Mater. Struct. 2005, 38, 601–607. [Google Scholar] [CrossRef]
- Cheng, J.; Shi, X.; Xu, L.; Zhang, P.; Zhu, Z.; Lu, S.; Yan, L. Investigation of the effects of styrene acrylate emulsion and vinyl acetate ethylene copolymer emulsion on the performance and microstructure of mortar. J. Build. Eng. 2023, 75, 106965. [Google Scholar] [CrossRef]
- Shu, X.; Zhao, Y.; Liu, Z.; Zhao, C. A study on the mix proportion of fiber-polymer composite reinforced cement-based grouting material. Constr. Build. Mater. 2022, 328, 127025. [Google Scholar] [CrossRef]
- Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, G.; Zhong, Z.; Wang, J.; Zhang, R.; Liu, B. Numerical investigation on fracture characteristic and failure mechanism of rock-like materials with intermittent flaws under compressive-shear loading. Constr. Build. Mater. 2023, 388, 131698. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, H.; Zhang, Q.; Pan, P.; Zhang, X.; Mei, G.; Liu, Z.; Wang, W. True triaxial test and PFC3D-GBM simulation study on mechanical properties and fracture evolution mechanisms of rock under high stresses. Comput. Geotech. 2023, 154, 105136. [Google Scholar] [CrossRef]
- He, Z.; Xie, Z.; Zhang, N.; Han, C.; Xiang, Z.; Yan, G.; Qiao, H.; Shao, C. Research on spatiotemporal evolution law of surrounding rock fractures and hierarchical collaborative control technology in high-stress soft rock roadway: A case study. Eng. Fail. Anal. 2023, 150, 107366. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B.; Xing, Y.; Zhang, K.; Jiang, W. Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar. Molecules 2020, 25, 754. [Google Scholar] [CrossRef]
- Bian, Y.; Huang, Y.; Li, F.; Dong, D.; Zhao, H.; Zhao, P.; Lu, L. Polyvinyl-Alcohol-Modified Calcium Sulphoaluminate Cement Repair Mortar: Hydration and Properties. Materials 2021, 14, 7834. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jeon, S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 2011, 48, 979–999. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J.; Dai, Z.; Yi, T. Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression. Eng. Fract. Mech. 2018, 197, 1–20. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2009, 46, 239–249. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 |
---|---|---|---|---|---|---|
Content (wt%) | 20.81 | 4.54 | 3.15 | 64.22 | 2 | 2.5 |
Particle Size (μm) | Solid Content (%) | Viscosity (MPa·s) | pH | Minimum Film Forming Temperature (°C) | Dilution Stability (%) |
---|---|---|---|---|---|
2 | 54.5 | 500–1000 | 4.0–6.0 | 0 | 3.5 |
W/C | P/C | L/C | Ce/C | A/C | R/C | D/P | F/P |
---|---|---|---|---|---|---|---|
50% | 10% | 5% | 0.4% | 4% | 0.5% | 0.2% | 1% |
Group | Crack Angle (Angle with Pressure Direction) | Brushing Times | Test Type |
---|---|---|---|
C-1 | - | - | Compression test |
C-2 | - | - | Flexural test |
C-3 | 0°, 45°, 90° | - | Compression test |
C-4 | 0°, 45°, 90° | - | Flexural test |
STSL-5 | 0°, 45°, 90° | 1 | Compression test |
STSL-6 | 0°, 45°, 90° | 1 | Flexural test |
STSL-7 | 0°, 45°, 90° | 2 | Compression test |
STSL-8 | 0°, 45°, 90° | 2 | Flexural test |
STSL-9 | 0°, 45°, 90° | 3 | Compression test |
STSL-10 | 0°, 45°, 90° | 3 | Flexural test |
VTSL-11 | 0°, 45°, 90° | 1 | Compression test |
VTSL-12 | 0°, 45°, 90° | 1 | Flexural test |
VTSL-13 | 0°, 45°, 90° | 2 | Compression test |
VTSL-14 | 0°, 45°, 90° | 2 | Flexural test |
VTSL-15 | 0°, 45°, 90° | 3 | Compression test |
VTSL-16 | 0°, 45°, 90° | 3 | Flexural test |
PTSL-17 | 0°, 45°, 90° | 1 | Compression test |
PTSL-18 | 0°, 45°, 90° | 1 | Flexural test |
PTSL-19 | 0°, 45°, 90° | 2 | Compression test |
PTSL-20 | 0°, 45°, 90° | 2 | Flexural test |
PTSL-21 | 0°, 45°, 90° | 3 | Compression test |
PTSL-22 | 0°, 45°, 90° | 3 | Flexural test |
Extensibility/mm | Viscosity/MPa·s | Compressive Strength/MPa | Flexural Strength/MPa | Ratio of Bending to Compression | Air Permeability/cm3·m−2 | |
---|---|---|---|---|---|---|
STSL | 226 | 1400 | 16.02 | 12.89 | 0.81 | 1.20 × 106 |
VTSL | 196 | 3800 | 19.43 | 8.98 | 0.46 | 1.11 × 106 |
PTSL | 172 | 4200 | 22.05 | 13.47 | 0.61 | 1.14 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, J.; Yu, X.; Wang, P.; Liu, G.; Cui, L.; Cui, X. Repairing Performance of Polymer-Modified Cement-Based Thin Spray-On Liners on Pre-Cracked Rock-like Specimens. Coatings 2024, 14, 232. https://doi.org/10.3390/coatings14020232
Teng J, Yu X, Wang P, Liu G, Cui L, Cui X. Repairing Performance of Polymer-Modified Cement-Based Thin Spray-On Liners on Pre-Cracked Rock-like Specimens. Coatings. 2024; 14(2):232. https://doi.org/10.3390/coatings14020232
Chicago/Turabian StyleTeng, Jinlong, Xiaotong Yu, Ping Wang, Guoming Liu, Lingnan Cui, and Xiangfei Cui. 2024. "Repairing Performance of Polymer-Modified Cement-Based Thin Spray-On Liners on Pre-Cracked Rock-like Specimens" Coatings 14, no. 2: 232. https://doi.org/10.3390/coatings14020232
APA StyleTeng, J., Yu, X., Wang, P., Liu, G., Cui, L., & Cui, X. (2024). Repairing Performance of Polymer-Modified Cement-Based Thin Spray-On Liners on Pre-Cracked Rock-like Specimens. Coatings, 14(2), 232. https://doi.org/10.3390/coatings14020232