High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy
Abstract
:1. Introduction
2. Experimental Materials and Research Methods
3. Experimental Results and Analysis
3.1. Analysis of the Tensile Behavior
3.2. Metallographic Structure
3.3. Transmission Electron Microscopy Analysis of the Microstructure
3.4. Mechanical Properties after High-Temperature Deformation
3.5. Fracture Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pawel, Z.; Radosław, W.; Maciej, M.; Marcin, N.; Zygmunt, P. Experimental and Numerical Study on the PG-7VM Warhead Performance against High-Hardness Armor Steel. Materials 2021, 14, 3020. [Google Scholar]
- Yuan, S.Q.; Zhang, B.Y.; Chen, Z.M.; Shang, F.J. Current situation and development of tungsten alloy materials for warhead. China Tungsten Ind. 2015, 30, 49–52. [Google Scholar]
- Jo, M.C.; Kim, S.; Kim, D.W.; Park, H.K.; Hong, S.S.; Kim, H.K.; Kim, H.S.; Sohn, S.S.; Lee, S. Understanding of adiabatic shear band evolution during high-strain-rate deformation in high-strength armor steel. J. Alloys Compd. 2020, 845, 155540. [Google Scholar] [CrossRef]
- Sharma, V.; Namburu, S.A.S.; Lalwani, P.; Sagar, C.K.; Gupta, A.K. Constitutive modelling and processing map analysis of tungsten heavy alloy (92.5 W-5.25Ni-2.25Fe) at elevated temperatures. Int. J. Refract. Met. Hard Mater. 2018, 76, 168–179. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V.; Baranov, G.V.; Belov, V.Y.; Popov, A.A.; Lantsev, E.A.; Smirnova, E.S. Influence of high-energy ball milling on the solid-phase sintering kinetics of ultrafine-grained heavy tungsten alloy. Dokl. Phys. 2017, 62, 420–424. [Google Scholar] [CrossRef]
- Kiran, U.R.; Kumar, J.; Kumar, V.; Sankaranarayana, M.; Rao, G.N.; Nandy, T. Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys. Mater. Sci. Eng. A 2016, 656, 256–265. [Google Scholar] [CrossRef]
- Gong, X.; Fan, J.; Ding, F.; Song, M.; Huang, B.; Tian, J. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion. Mater. Sci. Eng. A 2011, 528, 3646–3652. [Google Scholar] [CrossRef]
- Kiran, U.R.; Venkat, S.; Rishikesh, B.; Iyer, V.; Sankaranarayana, M.; Nandy, T. Effect of tungsten content on microstructure and mechanical properties of swaged tungsten heavy alloys. Mater. Sci. Eng. A 2013, 582, 389–396. [Google Scholar] [CrossRef]
- Prabhu, G.; Kumar, N.A.; Sankaranarayana, M.; Nandy, T. Tensile and impact properties of microwave sintered tungsten heavy alloys. Mater. Sci. Eng. A 2014, 607, 63–70. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Huskins, E.L.; Park, M.; Livers, S.; Frary, M.; Schuster, B.E.; Schuh, C.A. Powder-route synthesis and mechanical testing of ultrafine grain tungsten alloys. Met. Mater. Trans. A 2014, 45, 3609–3618. [Google Scholar] [CrossRef]
- Zuo, G.; Cui, N.N.; Li, X.J.; Wen, S.B.; Zheng, H.J. Analysis and supply suggestions of mineral industry of superior metal in our country-take tungsten, antimony, rare earth as examples. Nat. Resour. Econ. China 2022, 35, 11–17+38. [Google Scholar]
- Ye, L.; Han, Y.; Fan, J.; Du, Z. Fabrication of ultrafine-grain and great-performance W–Ni–Fe alloy with medium W content. J. Alloys Compd. 2020, 846, 156237. [Google Scholar] [CrossRef]
- Sunwang, N.; Wangyao, P.; Boonyongmaneerat, Y. The effects of heat treatments on hardness and wear resistance in Ni–W alloy coatings. Surf. Coat. Technol. 2011, 206, 1096–1101. [Google Scholar] [CrossRef]
- Lee, H.B. Synergy between corrosion and wear of electrodeposited Ni–W coating. Tribol. Lett. 2013, 50, 407–419. [Google Scholar] [CrossRef]
- Li, Z.-B.; Zhang, H.; Chen, B.; Zhang, G.-H.; Chou, K.-C. Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility. Mater. Sci. Eng. A 2021, 817, 141376. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Yang, C.-M.; Liu, Q.-J. Mechanical properties of tungsten heavy alloy and damage behaviors after hypervelocity impact. Rare Met. 2014, 33, 414–418. [Google Scholar] [CrossRef]
- Islam, S.H. Variation of the mechanical properties of tungsten heavy alloys tested at different temperatures. Rare Met. 2011, 30, 392–395. [Google Scholar] [CrossRef]
- Li, Y.; Hu, K.; Li, X. Fine-grained 93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by spark plasma sintering. Mater. Sci. Eng. A. 2013, 573, 245–252. [Google Scholar] [CrossRef]
- Kim, D.; Nemat-Nasser, S.; Isaacs, J.; Lischer, D. Adiabatic shearband in WHA in high-strain-rate compression. Mech. Mater. 1998, 28, 227–236. [Google Scholar] [CrossRef]
- Senthilnathan, N.; Annamalai, A.R.; Venkatachalam, G. Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys. Mater. Sci. Eng. A 2018, 710, 66–73. [Google Scholar] [CrossRef]
- Xiong, Y.; Shu, K.-H.; Li, Y.; Chen, Z.-G.; Zha, X.-Q.; He, T.-T.; Han, S.; Wang, C.-X. Deformation temperature impacts on the microstructure evolution and mechanical properties of a novel medium-heavy alloy (MHA). Mater. Sci. Eng. A 2022, 856, 144005. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.Q.; Hu, X.B.; Wu, L.H.; Tan, C.W.; Dravid, V.P.; Liu, S.Z. A novel medium heavy alloy with superior quasi-static and dynamic properties. Scr. Mater. 2019, 162, 311–315. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, B.; Bernacki, M.; Rohrer, G.; Rollett, A.; Bozzolo, N. Annealing twin development during recrystallization and grain growth in pure nickel. Mater. Sci. Eng. A 2014, 597, 295–303. [Google Scholar] [CrossRef]
- Du, S.Y.; Chen, M.H.; Xie, L.S.; Chen, C. Warm quasi-static tensile experiment and prediction of flow stress of new Al-Li alloy. Rare Met. Mater. Eng. 2018, 47, 2113–2119. [Google Scholar]
- Sivapragash, M.; Lakshminarayanan, P.; Karthikeyan, R.; Hanumantha, M.; Bhatt, R. Hot deformation behavior of ZE41A magnesium alloy. Mater. Des. 2008, 29, 860–866. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, J.Y.; Duan, X.G.; Lin, H.T.; Chen, K.J.; Hai, T. Study on Hot Deformation Behavior and Microstructure Evolution Mechanism of AA7021 Aluminum Alloy. Mater. Rep. 2020, 34, 8106–8112. [Google Scholar]
- Xiong, Y.; Shu, K.-H.; Li, Y.; Chen, Z.-G.; Zha, X.-Q.; He, T.-T.; Wang, S.-B. Excellent strength-ductility synergy in a ultra-high strength Ni-W-Co-Ta medium-heavy alloy by orthogonal rolling. J. Mater. Process. Technol. 2023, 316, 117968. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, L.Y.; Zhang, X.M. Inhomogeneity of superplastic deformation of 5A90 Al-Li alloy and its effect on cavity evolution. Trans. Nonferrous Met. Soc. China 2013, 23, 2125–2132. [Google Scholar]
- Miller, D.A.; Langdon, T.G. A cavity growth diagram for high temperature creep. Scr. Metall. 1980, 14, 179–182. [Google Scholar] [CrossRef]
- Lukas, P.; Klesnil, M. Cyclic stress-strain response and fatigue life of metals in low amplitude region. Mater. Sci. Eng. 1973, 11, 345–356. [Google Scholar] [CrossRef]
- Mughrabi, H. On the current understanding of strain gradient plasticity. Mater. Sci. Eng A 2004, 209, 387–389. [Google Scholar] [CrossRef]
- Dodaran, M.S.; Guo, S.; Khonsari, M.M.; Shamsaei, N.; Shao, S. A theoretical calculation of stacking fault energy of Ni alloys: The effects of temperature and composition. Comput. Mater. Sci. 2021, 191, 110326. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, C.Y. Doping effects on the stacking fault energies of the gamma phase in Ni-based superalloys. Chin. Phys. B 2020, 29, 026401. [Google Scholar] [CrossRef]
- Yu, X.F.; Tian, S.G.; Yang, J.H. Thermodynamic calculation of the influence of W and Co on the layer fault energy of Ni alloy. J. Mater. Metall. 2004, 3, 294–297. [Google Scholar]
- Yuan, Y.; Gu, Y.; Cui, C.; Osada, T.; Zhong, Z.; Tetsui, T.; Yokokawa, T.; Harada, H. Influence of Co content on stacking fault energy in Ni–Co base disk superalloys. J. Mater. Res. 2012, 26, 2833–2837. [Google Scholar] [CrossRef]
- Gerold, V.; Karnthaler, H. On the origin of planar slip in f.c.c. alloys. Acta Met. 1989, 37, 2177–2183. [Google Scholar] [CrossRef]
- Wei, J.X.; Yan, H.; Chen, R.S. Notch strength and notch fracture mechanisms of a cast Mg-Gd-Y alloy. Mater. Sci. Eng. A 2022, 835, 142668. [Google Scholar] [CrossRef]
Chemical Component | W | Co | Ta | Mg | C | B | Ni |
---|---|---|---|---|---|---|---|
Percentage (wt%) | 39.5 | 5.04 | 0.99 | 0.0002 | 0.0005 | 0.0007 | margin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiong, Y.; Tang, J.; Han, S.; Ren, F.; Wang, C.; Wang, S. High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy. Coatings 2024, 14, 323. https://doi.org/10.3390/coatings14030323
Li Y, Xiong Y, Tang J, Han S, Ren F, Wang C, Wang S. High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy. Coatings. 2024; 14(3):323. https://doi.org/10.3390/coatings14030323
Chicago/Turabian StyleLi, Yong, Yi Xiong, Jinjin Tang, Shun Han, Fengzhang Ren, Chunxu Wang, and Shubo Wang. 2024. "High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy" Coatings 14, no. 3: 323. https://doi.org/10.3390/coatings14030323
APA StyleLi, Y., Xiong, Y., Tang, J., Han, S., Ren, F., Wang, C., & Wang, S. (2024). High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy. Coatings, 14(3), 323. https://doi.org/10.3390/coatings14030323