Preparation of Wood-Based Carbon Quantum Dots and Promotion of Light Capture Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood-Based Carbon Quantum Dot Preparation
2.2. Synthesis of N-Doped Wood-Based Carbon Quantum Dots
2.3. Characterization of CQDs and N-CQDs
2.4. Effects of CQDs and N-CQDs on Photosynthetic Pigments
2.5. Effect of CQDs and N-CQDs on Photosynthetic Activity
3. Results and Discussion
3.1. Characterization of CQDs and N-CQDs
3.1.1. TEM Morphology Analysis
3.1.2. Optical Performance Analysis
3.1.3. FTIR Analysis
3.1.4. XPS Analysis
3.2. Analysis of Photosynthetic Pigment Content
3.3. Measurement of Photosynthetic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to Improve Light Utilization in Solar Fuel Synthesis. Nat. Energy 2022, 7, 13–24. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Schepers, J. Relationships between Gross Primary Production, Green LAI, and Canopy Chlorophyll Content in Maize: Implications for Remote Sensing of Primary Production. Remote Sens. Environ. 2014, 144, 65–72. [Google Scholar] [CrossRef]
- Gilbert, M.E.; Zwieniecki, M.A.; Holbrook, N.M. Independent Variation in Photosynthetic Capacity and Stomatal Conductance Leads to Differences in Intrinsic Water Use Efficiency in 11 Soybean Genotypes before and during Mild Drought. J. Exp. Bot. 2011, 62, 2875–2887. [Google Scholar] [CrossRef] [PubMed]
- Maurino, V.G.; Weber, A.P.M. Engineering Photosynthesis in Plants and Synthetic Microorganisms. J. Exp. Bot. 2013, 64, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Z.; Dong, R.; Xie, G.; Zhou, J.; Wu, K.; Zhang, H.; Cai, Q.; Lei, B. Characterization and Properties of a Sr2Si5N8:Eu2+-Based Light-Conversion Agricultural Film. J. Rare Earths 2020, 38, 539–545. [Google Scholar] [CrossRef]
- Pavlov, S.A.; Sherstneva, N.E.; Koryakin, S.L.; Maksimova, E.Y.; Makovetskiy, V.V.; Krikushenko, V.V.; Antipov, E.M. Features of Light Conversion Process with Covering Materials Containing Quantum Dots and Their Application in Agriculture. Nano Hybrids Compos. 2017, 13, 162–175. [Google Scholar] [CrossRef]
- Dong, R.; Li, Y.; Li, W.; Zhang, H.; Liu, Y.; Ma, L.; Wang, X.; Lei, B. Recent Developments in Luminescent Nanoparticles for Plant Imaging and Photosynthesis. J. Rare Earths 2019, 37, 903–915. [Google Scholar] [CrossRef]
- Nuccio, M.L.; Potter, L.; Stiegelmeyer, S.M.; Curley, J.; Cohn, J.; Wittich, P.E.; Tan, X.; Davis, J.; Ni, J.; Trullinger, J.; et al. Strategies and Tools to Improve Crop Productivity by Targeting Photosynthesis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160377. [Google Scholar] [CrossRef]
- Gun’ko, Y.K.; Moloney, M.M.; Gallagher, S.; Govan, J.; Hanley, C. New Quantum Dot Sensors. In Proceedings of the Annual SPIE Defense, Security, and Sensing Conference, Orlando, FL, USA, 5–9 April 2010. [Google Scholar]
- Zhao, M.-X.; Zeng, E.-Z. Application of Functional Quantum Dot Nanoparticles as Fluorescence Probes in Cell Labeling and Tumor Diagnostic Imaging. Nanoscale Res. Lett. 2015, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- de Dios, A.S.; Díaz-García, M.E. Multifunctional Nanoparticles: Analytical Prospects. Anal. Chim. Acta 2010, 666, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, C.; Budak, E.; Kestir, S.M. Altering Natural Photosynthesis through Quantum Dots: Effect of Quantum Dots on Viability, Light Harvesting Capacity and Growth of Photosynthetic Organisms. Funct. Plant Biol. 2022, 49, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Rakovich, A.; Donegan, J.F.; Oleinikov, V.; Molinari, M.; Sukhanova, A.; Nabiev, I.; Rakovich, Y.P. Linear and Nonlinear Optical Effects Induced by Energy Transfer from Semiconductor Nanoparticles to Photosynthetic Biological Systems. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 17–32. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, Y.; Zhuang, J.; Zhang, X.; Zhang, H.; Lei, B.; Hu, C.; Liu, Y. A Review on the Effects of Carbon Dots in Plant Systems. Mater. Chem. Front. 2020, 4, 437–448. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon Quantum Dots from Natural Resource: A Review. Mater. Today Chem. 2018, 8, 96–109. [Google Scholar] [CrossRef]
- Ghosal, K.; Ghosh, A. Carbon Dots: The next Generation Platform for Biomedical Applications. Mater. Sci. Eng. C 2019, 96, 887–903. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Li, Y.-D.; Xu, X.-K.; Li, W.; Hu, C.-F.; Zhuang, J.-L.; Zhang, X.-J.; Lei, B.-F.; Liu, Y.-L. Progress of fluorescent carbon spot regulation of plant photosynthesis. J. Lumin. 2021, 42, 1172–1181. [Google Scholar]
- Dots Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar]
- Li, X.; Liu, X.; Su, Y.; Jiang, T.; Li, D.; Ma, X. Green Synthesis of Carbon Quantum Dots from Wasted Enzymatic Hydrolysis Lignin Catalyzed by Organic Acids for UV Shielding and Antioxidant Fluorescent Flexible Film. Ind. Crops Prod. 2022, 188, 115568. [Google Scholar] [CrossRef]
- Wang, C.; Hu, T.; Thomas, T.; Song, S.; Wen, Z.; Wang, C.; Song, Q.; Yang, M. Surface State-Controlled C-Dot/C-Dot Based Dual-Emission Fluorescent Nanothermometers for Intra-Cellular Thermometry. Nanoscale 2018, 10, 21809–21817. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, X.; Lei, B.; Zhuang, J.; Zhang, X.; Hu, C.; Cui, J.; Liu, Y. Magnesium-Nitrogen Co-Doped Carbon Dots Enhance Plant Growth through Multifunctional Regulation in Photosynthesis. Chem. Eng. J. 2021, 422, 130114. [Google Scholar] [CrossRef]
- Zou, J.-P.; Wang, L.-C.; Luo, J.; Nie, Y.-C.; Xing, Q.-J.; Luo, X.-B.; Du, H.-M.; Luo, S.-L.; Suib, S.L. Synthesis and Efficient Visible Light Photocatalytic H2 Evolution of a Metal-Free g-C3N4/Graphene Quantum Dots Hybrid Photocatalyst. Appl. Catal. B Environ. 2016, 193, 103–109. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X.; Wang, M.; Huang, J.; Jiang, X.; Pang, J.; Xu, F.; Zhang, X. Synthesis of N-Doped Carbon Quantum Dots from Bio-Waste Lignin for Selective Irons Detection and Cellular Imaging. Int. J. Biol. Macromol. 2019, 128, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, N.; Kim, J. Synthesis of Carbon Quantum Dots from Broccoli and Their Ability to Detect Silver Ions. Mater. Lett. 2018, 219, 37–40. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of Carbon Quantum Dots with Tunable Photoluminescence by Rapid Laser Passivation in Ordinary Organic Solvents. Chem. Commun. 2010, 47, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, J.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3, 2367–2375. [Google Scholar] [CrossRef]
- Liu, H.; Ye, T.; Mao, C. Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Z.; Wang, Z.; Zhang, Y.; Sun, X.; Hou, L.; Yuan, C. Foxtail Millet-Derived Highly Fluorescent Multi-Heteroatom Doped Carbon Quantum Dots towards Fluorescent Inks and Smart Nanosensors for Selective Ion Detection. New J. Chem. 2018, 42, 7326–7331. [Google Scholar] [CrossRef]
- Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016, 6, 72423–72432. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave Synthesis of Fluorescent Carbon Nanoparticles with Electrochemiluminescence Properties. Chem. Commun. 2009, 5118–5120. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X.; et al. Large Scale Synthesis of Photoluminescent Carbon Nanodots and Their Application for Bioimaging. Nanoscale 2013, 5, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. Facile Synthesis of Novel Carbon Quantum Dots from Biomass Waste for Highly Sensitive Detection of Iron Ions. Mater. Res. Bull. 2020, 124, 110730. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Sonker, A.K.; Bhati, A.; Bhuyan, J.; Singh, A.; Singh, A.; Sarkar, S.; Sonkar, S.K. Large-Scale Synthesis of Soluble Graphitic Hollow Carbon Nanorods with Tunable Photoluminescence for the Selective Fluorescent Detection of DNA. New J. Chem. 2016, 40, 1571–1579. [Google Scholar] [CrossRef]
- Lu, M.; Duan, Y.; Song, Y.; Tan, J.; Zhou, L. Green Preparation of Versatile Nitrogen-Doped Carbon Quantum Dots from Watermelon Juice for Cell Imaging, Detection of Fe3+ Ions and Cysteine, and Optical Thermometry. J. Mol. Liq. 2018, 269, 766–774. [Google Scholar] [CrossRef]
- Wu, Z.L.; Zhang, P.; Gao, M.X.; Liu, C.F.; Wang, W.; Leng, F.; Huang, C.Z. One-Pot Hydrothermal Synthesis of Highly Luminescent Nitrogen-Doped Amphoteric Carbon Dots for Bioimaging from Bombyx Mori Silk—Natural Proteins. J. Mater. Chem. B 2013, 1, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Guo, B.; Zou, Y.; He, J.; Hu, C.; Zhuang, J.; Liu, Y. Different Kinds of Citric Acid Based Carbon Dots and Their Enhancement of the Growth of Italian Lettuce. ACS Agric. Sci. Technol. 2022, 2, 684–692. [Google Scholar] [CrossRef]
- Yuan, S.-J. Lignin Extraction and Preparation of Carbon Quantum Dots and Applications. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2022. [Google Scholar]
- Gan, J.; Wu, Y.; Yang, F.; Zhang, H.; Wu, X.; Wang, Y.; Xu, R. Wood-Cellulose Photoluminescence Material Based on Carbon Quantum Dot for Light Conversion. Carbohydr. Polym. 2022, 290, 119429. [Google Scholar] [CrossRef]
- Si, M.; Zhang, J.; He, Y.; Yang, Z.; Yan, X.; Liu, M.; Zhuo, S.; Wang, S.; Min, X.; Gao, C.; et al. Synchronous and Rapid Preparation of Lignin Nanoparticles and Carbon Quantum Dots from Natural Lignocellulose. Green Chem. 2018, 20, 3414–3419. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Song, Y.; Li, H.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. Carbon Dots Promote the Growth and Photosynthesis of Mung Bean Sprouts. Carbon 2018, 136, 94–102. [Google Scholar] [CrossRef]
- Ren, H.-X.; Liu, L.; Liu, C.; He, S.-Y.; Huang, J.; Li, J.-L.; Zhang, Y.; Huang, X.-J.; Gu, N. Physiological Investigation of Magnetic Iron Oxide Nanoparticles towards Chinese Mung Bean. J. Biomed. Nanotechnol. 2011, 7, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; She, M.; Chen, Q.; Liu, L.; Cai, X.; Huang, Y.; Xiang, F. Impact of Dual-Emissive Carbon Dots on Growth and Physiological Indexes of Cucumber Seedlings. Gesunde Pflanz. 2022, 74, 695–704. [Google Scholar] [CrossRef]
- Kopnov, F.; CoheN-Ofri, I.; Noy, D. Electron Transport between Photosystem II and Photosystem I Encapsulated in Sol–Gel Glasses. Angew. Chem. Int. Ed. 2011, 50, 12347–12350. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xia, J.; Chen, X.; Ji, M.; Yin, S.; Zhang, Q.; Li, H. Tunable Oxygen Activation Induced by Oxygen Defects in Nitrogen Doped Carbon Quantum Dots for Sustainable Boosting Photocatalysis. Carbon 2017, 114, 601–607. [Google Scholar] [CrossRef]
- Tsai, K.-A.; Hsieh, P.-Y.; Lai, T.-H.; Tsao, C.-W.; Pan, H.; Lin, Y.-G.; Hsu, Y.-J. Nitrogen-Doped Graphene Quantum Dots for Remarkable Solar Hydrogen Production. ACS Appl. Energy Mater. 2020, 3, 5322–5332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Xu, H.; Guo, Q.; Yang, D.; Pan, Y.; Xue, Z. Preparation of Wood-Based Carbon Quantum Dots and Promotion of Light Capture Applications. Coatings 2024, 14, 417. https://doi.org/10.3390/coatings14040417
Fu Y, Xu H, Guo Q, Yang D, Pan Y, Xue Z. Preparation of Wood-Based Carbon Quantum Dots and Promotion of Light Capture Applications. Coatings. 2024; 14(4):417. https://doi.org/10.3390/coatings14040417
Chicago/Turabian StyleFu, Yujia, Hui Xu, Qiang Guo, Dongbo Yang, Yanfei Pan, and Zhenhua Xue. 2024. "Preparation of Wood-Based Carbon Quantum Dots and Promotion of Light Capture Applications" Coatings 14, no. 4: 417. https://doi.org/10.3390/coatings14040417
APA StyleFu, Y., Xu, H., Guo, Q., Yang, D., Pan, Y., & Xue, Z. (2024). Preparation of Wood-Based Carbon Quantum Dots and Promotion of Light Capture Applications. Coatings, 14(4), 417. https://doi.org/10.3390/coatings14040417