Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Thermal Oxidation
2.2. Characterization
2.3. Tribological Testing
3. Results and Discussion
3.1. Oxide Layer
3.2. Tribological Behavior
3.3. Discussion
4. Conclusions
- (1)
- The thermal oxidation temperature has a considerable influence on the formation of the oxide layer. As the temperature increases, the oxide grows and agglomerates to form a complete oxide layer with an increasing thickness. The sample treated at 700 °C has the highest thickness (3.656 μm) and the surface hardness increases from 366 ± 20 HV0.05 to 1246 ± 40 HV0.05.
- (2)
- The TiO2 layer formed by thermal oxidation can significantly enhance the wear resistance of the Ti6Al4V alloy. The oxidation-treated samples at 700 °C show the best wear resistance, with a reduction of 92.6% at high temperatures, and the amount of wear at room temperature is almost incalculable.
- (3)
- The wear mechanism at RT and 400 °C is adhesive wear. In addition, due to the activation of the tribochemical activity of Si during the friction of Si3N4 with the Ti6Al4V alloy, there is clear silicon diffusion in the wear track.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlenko, D.; Dvirnyk, Y.; Przysowa, R. Advanced materials and technologies for compressor blades of small turbofan engines. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012061. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Z.; He, W.; Pang, Z.; Ning, Z.; Chen, R.; Zheng, C.; Yan, C.; Guo, L. Improved tribocorrosionproperties of Ti6Al4V alloy by anodic plasma electrolytic oxidation. Adv. Eng. Mater. 2023, 25, 2300228. [Google Scholar] [CrossRef]
- Yang, W.; He, X.; Li, H.; Dong, J.; Chen, W.; Xin, H.; Jin, Z. A tribological investigation of SLM fabricated TC4 Titanium alloy with carburization pre-treatment. Ceram. Int. 2020, 46, 3043–3050. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Zou, J.; Yang, H. Sliding wear of selective laser melting processed Ti6Al4V under boundary lubrication conditions. Wear 2016, 368–369, 485–495. [Google Scholar] [CrossRef]
- Shao, M.; Wang, W.; Yang, H.; Zhang, X.; He, X. Preparation of wear-resistant coating on Ti6Al4V alloy by cold spraying and plasma electrolytic oxidation. Coatings 2021, 11, 1288. [Google Scholar] [CrossRef]
- Xue, W.; Gao, S.; Duan, D.; Wang, L.; Liu, Y.; Li, S. Study on the high-speed rubbing wear behavior between Ti6Al4V blade and nickel–graphite abradable seal Coating. J. Tribol. 2017, 139, 021604. [Google Scholar] [CrossRef]
- Xue, W.; Gao, S.; Duan, D.; Liu, Y.; Li, S. Material transfer behaviour between a Ti6Al4V blade and an Aluminumhexagonal boron nitride abradable coating during high-speed rubbing. Wear 2015, 322–323, 76–90. [Google Scholar] [CrossRef]
- Tüfekci, M. Performance Evaluation Analysis of Ti-6Al-4V foam fan blades in aircraft engines: A numerical study. Compos. Part C Open Access 2023, 12, 100414. [Google Scholar] [CrossRef]
- Zeng, Q.; Qi, W. High temperature superlubricity behaviors achieved by AlSiN coatings against WS2 coatings at 600 °C. Ceram. Int. 2024, 50, 3787–3796. [Google Scholar] [CrossRef]
- Zeng, Q. High-temperature superlubricityperformance of h-BN coating on the textured Inconel X750 Alloy. Lubricants 2023, 11, 258. [Google Scholar] [CrossRef]
- Baïz, S.; Fabis, J.; Boidin, X.; Desplanques, Y. Experimental investigation of the blade/seal interaction. Proc. Inst. Mech. Eng. Part J 2013, 227, 980–995. [Google Scholar] [CrossRef]
- Scrinzi, E.; Giovannetti, I.; Sheng, N.; Leblanc, L. Development of New Abradable/Abrasive Sealing Systems for Clearance Control in Gas Turbines; American Society of Mechanical Engineers Digital Collection; ASME: Hamburg, Germany, 2014. [Google Scholar]
- Philip, J.; Mathew, J.; Kuriachen, B. Tribology of Ti6Al4V: A review. Friction 2019, 7, 497–536. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Iozzelli, F.; Pradelli, G. Improvement of wear resistance of Ti–6Al–4V alloy by means of thermal oxidation. Mater. Lett. 2005, 59, 2159–2162. [Google Scholar] [CrossRef]
- Dong, H.; Bell, T. Enhanced wear resistance of Titanium surfaces by a new thermal oxidation treatment. Wear 2000, 238, 131–137. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, W. A systematic review of the recent advances in superlubricity research. Coatings 2023, 13, 1989. [Google Scholar] [CrossRef]
- Guleryuz, H.; Cimenoglu, H. Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surf. Coat. Technol. 2005, 192, 164–170. [Google Scholar] [CrossRef]
- Wang, S.; Liao, Z.; Liu, Y.; Liu, W. Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V Alloy. Surf. Coat. Technol. 2014, 240, 470–477. [Google Scholar] [CrossRef]
- Wang, S.; Liao, Z.; Liu, Y.; Liu, W. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy. Mater. Chem. Phys. 2015, 159, 139–151. [Google Scholar] [CrossRef]
- Lou, M.; Alpas, A. High temperature wear mechanisms in thermally oxidized Titanium alloys for engine valve applications. Wear 2019, 426–427, 443–453. [Google Scholar] [CrossRef]
- Liu, J.; Suslov, S.; Lim, S.; Qin, H.; Ren, Z.; Ma, C.; Wang, G.; Doll, G.; Cong, H.; Dong, Y.; et al. Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V. Surf. Coat. Technol. 2017, 325, 289–298. [Google Scholar] [CrossRef]
- Yuan, S.; Lin, N.; Zou, J.; Lin, X.; Liu, Z.; Yu, Y.; Wang, Z.; Zeng, Q.; Chen, W.; Tian, L.; et al. In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance. Vacuum 2020, 176, 109327. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Zhang, J. Study on effect of thermal oxidation treatment on wear resistance of Titanium alloy. Surf. Technol. 2008, 37, 18–20 + 23. [Google Scholar]
- Li, Y.; Zhao, Y.; Zeng, W. Application and development of aerial Titanium alloys. Mater. Rep. 2020, 34, 280–282. [Google Scholar]
- Singh, P.; Pungotra, H.; Kalsi, N. On the characteristics of Titanium alloys for the aircraft applications. Mater. Today Proc. 2017, 4, 8971–8982. [Google Scholar] [CrossRef]
- Guleryuz, H.; Cimenoglu, H. Oxidation of Ti–6Al–4V Alloy. J. Alloys Compd. 2009, 472, 241–246. [Google Scholar] [CrossRef]
- Kumar, S.; Sankara Narayanan, T.; Ganesh Sundara Raman, S.; Seshadri, S. Thermal Oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization Ti6Al4V. Mater. Chem. Phys. 2010, 119, 337–346. [Google Scholar] [CrossRef]
- ISO 6507; Metallic Materials-Vickers Hardness Test—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2023.
- ASTM G99-23; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- Krzysztof, A. The influence of thermal oxidation parameters on the growth of oxide layers on titanium. Vacuum 2017, 144, 94–100. [Google Scholar]
- Zeng, Q.; Ning, Z.; Pang, Z.; Wang, Z.; Zheng, C. Self-assembled multilayer WS2/GO films on amorphous silicon coating for enhancing the lubricating properties. Appl. Surf. Sci. 2023, 624, 157184. [Google Scholar] [CrossRef]
- Jönsson, B.; Hogmark, S. Hardness Measurements of Thin Films. Thin Solid Films 1984, 114, 257–269. [Google Scholar] [CrossRef]
- Alvi, S.; Neikter, M.; Antti, M.; Akhtar, F. Tribological performance of Ti6Al4V at elevated temperatures fabricated by electron beam powder bed fusion. Tribol. Int. 2021, 153, 106658. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, H.; Ming, W.; An, Q.; Chen, M. New observations on wear characteristics of solid Al2O3/Si3N4ceramictool in high speed milling of additive manufactured Ti6Al4V. Ceram. Int. 2020, 46, 5876–5886. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, T.; Fan, H.; Zhang, Y.; Hu, L. Thermal Oxidation Behavior and Tribological Properties of Textured TC4 Surface: Influence of Thermal Oxidation Temperature and Time. Tribol. Int. 2016, 94, 479–489. [Google Scholar] [CrossRef]
- Singh, K.; Raman, S. High temperature sliding wear behaviour of Ti6Al4V thermal oxidised for different oxidation durations. Met. Mater. Int. 2023, 29, 357–368. [Google Scholar] [CrossRef]
Samples | Treatment Temperature (°C) | Treatment Duration (h) | Hardness (HV0.05) | Element Content | |
---|---|---|---|---|---|
Ti (at%) | O (at%) | ||||
Untreated | - | - | 366 ± 20 | 99.79 | 0.21 |
400 °C TO | 400 °C | 36 h | 530 ± 20 | 67.02 | 32.98 |
600 °C TO | 600 °C | 36 h | 951 ± 30 | 37.85 | 62.15 |
700 °C TO | 700 °C | 36 h | 1246 ± 40 | 32.08 | 67.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Sun, S.; Pang, Z.; Wei, X. Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment. Coatings 2024, 14, 416. https://doi.org/10.3390/coatings14040416
Zeng Q, Sun S, Pang Z, Wei X. Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment. Coatings. 2024; 14(4):416. https://doi.org/10.3390/coatings14040416
Chicago/Turabian StyleZeng, Qunfeng, Shichuan Sun, Zeming Pang, and Xunkai Wei. 2024. "Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment" Coatings 14, no. 4: 416. https://doi.org/10.3390/coatings14040416
APA StyleZeng, Q., Sun, S., Pang, Z., & Wei, X. (2024). Study on High-Temperature, Ultra-Low Wear Behaviors of Ti6Al4V Alloy with Thermal Oxidation Treatment. Coatings, 14(4), 416. https://doi.org/10.3390/coatings14040416