The Role of Rare Earths on Steel and Rare Earth Steel Corrosion Mechanism of Research Progress
Abstract
:1. Introduction
2. The Role of Rare Earths in Steel
2.1. Purification of Molten Steel
2.2. Spoilage Inclusions
2.3. Microalloying
- Solid solution strengthening improves grain boundaries.
- 2.
- Interaction with elements such as C and N increases solubility and decreases desolvation.
- 3.
- Influence the phase transition and refine the microstructure.
3. Corrosion Resistance Mechanism of Rare Earth Steels
3.1. Rare Earth Metamorphic Inclusions Improve Corrosion Resistance
3.1.1. Effect of Common Inclusions on Corrosion
3.1.2. Effect of Rare Earth Inclusions on Corrosion
3.2. Effect of Rare Earths on the Rust Layer
3.2.1. Promotion of α-FeOOH Generation by Rare Earths
3.2.2. Generation of Rare Earth Protective Film
3.3. Other Corrosion Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Han, E.H.; Chen, J.M.; Su, Y.J.; Liu, M. Corrosion protection techniques of marine engineering structure and ship equipment-current status and future trend. Mater. China 2014, 33, 65. [Google Scholar]
- Cho, S.H.; White, S.R.; Braun, P.V. Self-Healing Polymer Coatings. Adv. Mater. 2009, 21, 645–649. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Chen, J.; Xu, Y.; Liu, Z.Y. Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl− Containing Environment. J. Mater. Sci. Technol. 2013, 29, 168–174. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L. Improvement of corrosion resistance of Cu-based bulk metallic glasses by the microalloying of Mo. Intermetallics 2007, 15, 679–682. [Google Scholar] [CrossRef]
- Morozov, Y.; Calado, L.M.; Shakoor, R.A.; Raj, R.; Kahraman, R.; Taryba, M.G.; Montemor, M.F. Epoxy coatings modified with a new cerium phosphate inhibitor for smart corrosion protection of steel. Corros. Sci. 2019, 159, 108–128. [Google Scholar] [CrossRef]
- Xu, D.; Lou, C.; Huang, J.; Lu, X.; Xin, Z.; Zhou, C.L. Effect of inhibitor-loaded halloysite nanotubes on active corrosion protection of polybenzoxazine coatings on mild steel. Prog. Org. Coat. 2019, 134, 126–133. [Google Scholar] [CrossRef]
- Li, L.F.; Song, B.; Cui, X.K.; Liu, Z.; Wang, L.; Cheng, W.S. Effects of finish rolling deformation on hydrogen-induced cracking and hydrogen-induced ductility loss of high-vanadium TMCP X80 pipeline steel. Int. J. Hydrogen Energy 2020, 45, 30828–30844. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Wang, C.; Tu, Y.Y.; Jiang, J.Q. Effect of Thermo-Mechanical Processing on Grain Boundary Character Distribution and Sensitization of Austenitic Steel TP321. J. Mater. Eng. Perform. 2022, 31, 6759–6772. [Google Scholar] [CrossRef]
- Zhang, J.L.; Dong, Y.N.; Ding, C.; Yu, Y.C.; Wang, S.B. Corrosion behavior and kinetics model of rare earth low-alloy steel in a soil simulation solution. Mater. Corros. 2023, 74, 709–723. [Google Scholar] [CrossRef]
- Xia, G.J. Rare earths in steel application status and development trend. In Proceedings of the 12th Sodality for China Rare Earth Entrepreneurs, Nanning, China, 11–13 November 2008. [Google Scholar]
- Liu, Y.J. Present State and Main Task of Development of Rare Earth Industry in China. J. Chin. Soc. Rare Earths 2007, 25, 257. [Google Scholar]
- Yu, Z.S.; Lu, X.L. Progress and prospects of Chinese rare earth application in steel. Rare Earth Inf. 2001, 10, 4–5. [Google Scholar]
- Huang, Y.R.; Jin, X.; Cai, G.J. Evolution of microstructure and mechanical properties of a new high strength steel containing Ce element. J. Mater. Res. 2017, 32, 3894–3903. [Google Scholar] [CrossRef]
- Khalaj, G.; Pouraliakbar, H.; Jandaghi, M.R.; Gholami, A. Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical roperties enhancement. Int. J. Pres. Ves. Pip. 2017, 152, 15–26. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Khalaj, G.; Jandaghi, M.R.; Khalaj, M.J. Study on the correlation of toughness with chemical composition and tensile test results in microalloyed API pipeline steels. J. Min. Metall. 2015, 51, 25. [Google Scholar] [CrossRef]
- Adabavazeh, Z.; Hwang, W.S.; Su, Y.H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel. Sci. Rep. 2017, 7, 46503. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Li, H.W.; Zhang, J.; Zhou, L.; Zhao, G.S. Thermodynamic analysis and observation of cerium inclusions in cerium-containing IF steel. Chin. Rare Earths 2018, 39, 1–8. [Google Scholar]
- Liu, Y.Q.; Wang, L.J.; Chou, G.Z. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J. Rare Earths 2014, 32, 759–766. [Google Scholar] [CrossRef]
- Kang, J.; Yu, Y.C.; Meng, X.L.; Wang, S.B. Research on cleanliness of HRB400E steel treated with rare earth. Contin. Cast. 2020, 45, 38–42. [Google Scholar]
- Wang, L.M.; Du, T.; Lu, X.L.; Le, K.X. Study of Behaviors and Application of Micro-Rare Earth Elements in Steel. Chin. Rare Earths 2001, 22, 37–39. [Google Scholar]
- Kim, S.T.; Jeon, S.H.; Lee, I.S.; Park, Y.S. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel—part 1. Corros. Sci. 2010, 52, 1897–1904. [Google Scholar] [CrossRef]
- Yue, L.J.; Wang, L.M.; Han, J.S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel. J. Rare Earth. 2010, 28, 952–956. [Google Scholar] [CrossRef]
- Liu, H.L. Effect of Rare Earth on Microstructure and Property of X80 Pipeline Steel. Ph.D. Thesis, Northeastern University, Shenyang, China, 2015. [Google Scholar]
- Jeon, S.H.; Kim, S.T.; Choi, M.S.; Kim, J.S.; Kim, K.T.; Park, Y.S. Effects of cerium on the compositional variations in and around inclusions and the initiation and propagation of pitting corrosion in hyperduplex stainless steels. Corros. Sci. 2013, 75, 367–375. [Google Scholar] [CrossRef]
- Li, H. Effect of Trace Ce on Inclusions, Microstructure and Corrosion Resistance of EH36 Shipbuilding Steel. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2017. [Google Scholar]
- Liu, Q. Study on the Corrosion Behavior Induced by Typical Inclusions in 304 Stainless Steel. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2018. [Google Scholar]
- Xi, X.J.; Yang, S.F.; Li, J.S.; Zhao, M.J.; Ye, M.L. Inclusion modification and corrosion resistance optimization of 304 stainless steel containing cerium. Iron Steel 2020, 1, 8. [Google Scholar]
- Bao, D.H.; Huang, Y.; Cheng, G.G.; Qiao, T.; Dai, W.X. Effect of Ce content on precipitation behavior of rare earth inclusions in H13 steel. J. Iron Steel Res. 2021, 33, 792–800. [Google Scholar]
- Cao, Y.X. Low-Alloy Steels Resistance and Weldability of High-Strength Effect of Rare Earth Ce on the Corrosion. Ph.D. Thesis, Wuhan University of Science and Technology, Wuhan, China, 2021. [Google Scholar]
- Fu, X.Y.; Yang, J.C.; Zhao, L.P.; Li, M.D. The Action Mechanisms of RE Element in Steel and Its Study on Current Status. Hunan Nonferrous Metals 2015, 31, 55–57+63. [Google Scholar]
- Long, Q.; Wu, Y.J.; Ling, M.; Zhong, Y.B. Research and prospect on rare earth treated steel. Steelmaking 2018, 34, 57–64+70. [Google Scholar]
- Shi, D.K. Fundamentals of Materials Science; China Machine Press: Beijing, China, 2003. [Google Scholar]
- Liu, H.L.; Liu, C.J.; Jiang, M.F. Effects of Rare Earth Elements on Thermal Simulation Microstructure of B450NbRE Steel. Chin. J. Rare Met. 2011, 35, 53–58. [Google Scholar]
- Ding, W.; Gong, Z.H.; Wang, B.F. Function of Rare Earth La in U71Mn Heavy Rail Steel. Hot Work. Technol. 2013, 42, 27–33. [Google Scholar]
- Lin, Q.; Guo, F.; Zhu, X.Y. Behaviors of lanthanum and cerium on grain boundaries in carbon manganese clean steel. J. Rare Earths 2007, 4, 109–113. [Google Scholar] [CrossRef]
- Zhao, F.G. Study on Effect of Alloy Y-Mg on the Structure and Property of X70 Pipeline Steel. Master’s Thesis, Inner Mongolia University of Science & Technology, Baotou, China, 2009. [Google Scholar]
- Zhu, X.Y.; Chen, B.W.; Lin, Q. Current Status of Studies on Effect of Rare Earth Mirco Alloying. Res. Iron Steel 1999, 4, 60–64+19. [Google Scholar]
- Zheng, R.; Bian, Y.; Su, H.; Dong, J. Research on Microstructure and Corrosion Resistance of Microalloyed Rail with Ce. Sci. Technol. Baotou Steel 2019, 45, 59–61. [Google Scholar]
- Jiao, H.D.; Liu, L.X.; Peng, J.; Bie, Z.H.; Zhang, F.; Wang, X.L.; Zheng, L.L. Effect of Pearlite Structure of Cerium-Containing Heavy Rail Steel on Atmospheric Corrosion. J. Chin. Soc. Rare Earths 2021, 39, 775–785. [Google Scholar]
- Vuillemin, B.; Philippe, X.; Oltra, R.; Vignal, V.; Coudreuse, L.; Dufour, L.C.; Finot, E. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection. Corros. Sci. 2003, 45, 1143. [Google Scholar] [CrossRef]
- Park, I.J.; Lee, S.M.; Kang, M.; Lee, S.Y.; Lee, K. Pitting corrosion behavior in advanced high strength steels. J. Alloys Compd. 2015, 619, 205. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Liu, C.Y.; Qi, Y.M.; Chen, L.Q.; Chen, C.F. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion. Corros. Sci. 2013, 67, 20–31. [Google Scholar] [CrossRef]
- Torkkeli, J.; Saukkonen, T.; Hänninen, H. Effect of MnS inclusion dissolution on carbon steel stress corrosion cracking in fuel-grade ethanol. Corros. Sci. 2015, 96, 14–22. [Google Scholar] [CrossRef]
- Shibaeva, T.V.; Laurinavichyute, V.K.; Tsirlina, G.A.; Arsenkin, A.M.; Grigorovich, K.V. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions. Corros. Sci. 2014, 80, 299–308. [Google Scholar] [CrossRef]
- Avci, R.; Davis, B.H.; Wolfenden, M.L.; Beech, I.B.; Lucas, K.; Paul, D. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros. Sci. 2013, 76, 267. [Google Scholar] [CrossRef]
- Hou, Y.H.; Xiong, G.; Liu, L.L.; Li, G.Q.; Nele, M.; Guo, M.X. Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution. Scr. Mater. 2020, 177, 151–156. [Google Scholar] [CrossRef]
- Apachitei, I.; Fratila-Apachitei, L.E.; Duszczyk, J. Microgalvanic activity of an Mg-Al-Ca-based alloy studied by scanning Kelvin probe force microscopy. Scr. Mater. 2007, 57, 1012. [Google Scholar] [CrossRef]
- Hua, Z.L.; An, B.; Iijima, T.; Gu, C.; Zheng, J. The finding of crystallographic orientation dependence of hydrogen diffusion in austenitic stainless steel by scanning Kelvin probe force microscopy. Scr. Mater. 2017, 131, 47. [Google Scholar] [CrossRef]
- Chiba, A.; Muto, I.; Sugawara, Y.; Hara, N. Direct Observation of Pit Initiation Process on Type 304 Stainless Steel. Mater. Trans. 2014, 55, 857–860. [Google Scholar] [CrossRef]
- Shimahashi, N.; Muto, I.; Sugawara, Y.; Hara, N. Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel. J. Electrochem. Soc. 2014, 161, C494–C500. [Google Scholar] [CrossRef]
- Yang, Q.X.; Wu, H.Q.; Guo, J.H. Effect of rare earth on inclusion morphology of 60CrMnMo hot roll steel. Chin. J. Rare Met. 1992, 10, 151–154. [Google Scholar]
- Li, C.R.; Yang, H.; Wen, H. Thermodynamic Analysis of Modification Treatment of Rare Earth Elements on Inclusions in Hard Wire Steel. Hot Work. Technol. 2010, 4, 151–154. [Google Scholar]
- Zhang, D.T.; Shi, B.D. Graph Characterization Technology for Non-Metallic Inclusions in Steel; National Defense Industry Press: Beijing, China, 1980. [Google Scholar]
- Khatak, H.S.; Raj, R. Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Li, N.; Wang, Y.; Qiu, S.; Xiang, L. Effect of Ce on the evolution of recrystallization texture in a 1.2%Si-0.4%Al non-oriented electrical steel. ISIJ Int. 2016, 56, 1256–1261. [Google Scholar] [CrossRef]
- Zhang, J.; Su, C.M.; Chen, X.P.; Liu, H.Z.; Zhang, L.F. First-principles study on pitting corrosion of Al deoxidation stainless steel with rare earth element (La) treatment. Mater. Today Commun. 2021, 27, 102204. [Google Scholar] [CrossRef]
- Wei, J.; Dong, J.H.; Ke, W.; He, X.Y. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution. Corrosion 2015, 71, 1467. [Google Scholar] [CrossRef]
- Tan, J.B.; Wu, X.Q.; Han, E.H.; Ke, W.; Liu, X.Q.; Meng, F.J.; Xu, X.L. Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros. Sci. 2014, 88, 349. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, W.Z.; Cheng, L.; Liu, J.; Wu, K.M.; Liu, M. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels. Appl. Surf. Sci. 2019, 475, 83–93. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Tang, M.; Zhang, X.; Wu, K.M. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5 wt.% NaCl solution. J. Mater. Res. Technol. 2021, 11, 519–534. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Z.H.; Zhao, J.B.; Cheng, X.Q.; Liu, Z.Y.; Zhang, D.W.; Li, X.G. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel. Corros. Sci. 2020, 166, 108463. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Liu, Z.Y.; Zhang, D.W.; Li, X.G.; Terryn, H. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros. Sci. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Ha, H.Y.; Park, C.J.; Kwon, H.S. Effects of misch metal on the formation of non-metallic inclusions and the associated resistance to pitting corrosion in 25% Cr duplex stainless steels. Scr. Mater. 2006, 55, 991–994. [Google Scholar] [CrossRef]
- Ji, Y.P.; Zhang, M.X.; Ren, H.P. Roles of Lanthanum and Cerium in Grain Refinement of Steels during Solidification. Metals 2018, 8, 884. [Google Scholar] [CrossRef]
- Tang, M.; Wu, K.M.; Liu, J.; Cheng, L.; Zhang, X.; Chen, Y. Mechanism Understanding of the Role of Rare Earth Inclusions in the Initial Marine Corrosion Process of Microalloyed Steels. Materials 2019, 12, 3359. [Google Scholar] [CrossRef]
- Wei, W.Z.; Wu, K.M.; Zhang, X.; Liu, J.; Qiu, P.; Cheng, L. In-situ characterization of initial marine corrosion induced by rare-earth elements modified inclusions in Zr-Ti deoxidized low-alloy steels. J. Mater. Res. Technol. 2020, 9, 1412–1424. [Google Scholar] [CrossRef]
- Zou, Y. Research on Electrochemical Corrosion Behaviour of the Rusted Carbon Steel in Seawater. Ph.D. Thesis, Ocean University of China, Qinghai, China, 2010. [Google Scholar]
- Miyuki, H.; Yamashita, M.; Fujiwara, M.; Misawa, T. Ion Selective Properties of Rust Membranes and Protective Effect of Stable Rust Layer Formed on Weathering Steel. Zairyo-to-Kankyo 2009, 47, 186–192. [Google Scholar] [CrossRef]
- Li, S.X.; Hihara, L.H. In situ Raman spectroscopic identification of rust formation in Evans’ droplet experiments. Electrochem. Commun. 2012, 18, 48–50. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, K.; Dong, C.F.; Wu, J.S.; Li, X.G.; Huang, Y.Z. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42−. Eng. Fail. Anal. 2011, 18, 1981–1989. [Google Scholar] [CrossRef]
- Liang, H.X.; Liu, J.; Alfantazi, A.; Asselin, E. Corrosion behaviour of X100 pipeline steel under a salty droplet covered by simulated diluted bitumen. Mater. Lett. 2018, 222, 196–199. [Google Scholar] [CrossRef]
- Morcillo, M.; Dían, I.; Cano, H.; Chico, B.; de la Fuente, D. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts. Constr. Build. Mater. 2019, 213, 723–737. [Google Scholar] [CrossRef]
- Mi, F.Y.; Wang, X.D.; Liu, Z.P.; Wang, B.; Peng, Y.; Tao, D.P. Industrial atmospheric corrosion resistance of P-RE weathering steel. J. Iron. Steel. Res. Int. 2011, 18, 67. [Google Scholar] [CrossRef]
- Wang, L.M.; Lin, Q.; Yue, L.J.; Liu, L.; Guo, F.; Wang, F.M. Study of application of rare earth elements in advanced low alloy steels. J. Alloys Compd. 2018, 451, 534. [Google Scholar] [CrossRef]
- Hara, S.; Kamimura, T.; Miyuki, H.; Yamashita, M. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 2007, 49, 1131. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, J.R.; Wu, L.X.; Han, R.D.; Sun, Y.Q. Study of the corrosion behavior of weathering steels in atmospheric environments. Corros. Sci. 2013, 67, 1. [Google Scholar] [CrossRef]
- Kamimura, T.; Hara, S.; Miyuki, H.; Yamashita, M.; Uchida, H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros. Sci. 2006, 48, 2799–2812. [Google Scholar] [CrossRef]
- Lian, X.T.; Zhu, J.A.; Wang, R.Q.; Liu, T.S.; Xu, J.; Xu, D.X.; Dong, H. Effects of Rare Earth (Ce and La) on Steel Corrosion Behaviors under Wet-Dry Cycle Immersion Conditions. Metals 2020, 10, 1174. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.L.; Yu, Y.C.; Sun, W.J.; Ding, C.; Wang, S.B. Influence of Rare Earth on Electrochemical Corrosion Behavior of A572 Gr.65 Steel. Surf. Technol. 2020, 29, 217–223. [Google Scholar]
- Dong, R.F.; Li, H.; Zhang, X.Y.; Deng, X.T.; Cui, Q.L.; Chen, J.Q.; Yang, X.; Liang, J.W. The influence of rare earth elements lanthanum on corrosion resistance of steel plate for offshore platform. Mater. Res. Express 2021, 8, 096526. [Google Scholar]
- Barrett, C.D.; Imandoust, A.; Kadiri, H.E. The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening. Scr. Mater. 2018, 146, 46–50. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, S.F.; Song, S.H. Effect of minor rare earth cerium addition on the hot ductility of a reactor pressure vessel steel. Results Phys. 2019, 15, 102746. [Google Scholar] [CrossRef]
- Liu, Z.; Lian, X.T.; Liu, T.S.; Yang, Y.D.; Zhu, J.A.; Dong, H. Effects of rare earth elements on corrosion behaviors of low carbon steels and weathering steels. Mater. Corros. 2019, 71, 258–266. [Google Scholar] [CrossRef]
- Wu, G.; Jiang, X.F.; Wen, X.M.; Han, Y.; Chen, H.Y.; Li, X.; Wang, L.M.; Dong, Z.P.; Peng, F.; Lv, J.X. Rare Earth Corrosion Resistant Steel Plate, Its Preparation Method and Application In Building, Railway, Bridge and House. CN202110265158.1., 6 July 2021. [Google Scholar]
- Rodrıguez, J.J.; Hernández, F.J.; González, J.E.G. XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corros. Sci. 2002, 44, 2425–2438. [Google Scholar] [CrossRef]
- ShangGuan, Q.Q.; Cheng, X.H. Effect of rare earth elements on erosion resistance of nitrocarburized layers of 38CrMoAl steel. J. Rare Earths 2004, 22, 406–409. [Google Scholar]
- Diao, C.M.; Zhang, B.F.; Zhao, G.S.; Ma, C.C.; Meng, T.T. Method for Preparing Composite Corrosion-Resistant Steel Containing Rare Earth for Building. CN202110947842.8., 7 December 2021. [Google Scholar]
- Huang, L.; Wen, L.J.; Li, H.; Wang, D.; Lu, X.Y. Method for Preparing Rare Earth Microalloyed High Corrosion Resistant 690 MPa Grade High Strength Steel. CN202110593597.5., 21 September 2021. [Google Scholar]
- Lu, B.; Zhang, S.; Zhang, W.B. Smelting Method for Corrosion Resistant Rare Earth Microalloyed Steel. CN202110064441.8., 4 June 2021. [Google Scholar]
Rust Layer Composition | Main Properties |
---|---|
Fe3O4 | It is an electrical conductor, has certain reducing properties, has good densification and stability, and does not have anionic selectivity. |
α-FeOOH | It is an insulator, essentially electrochemically inactive, with low reducibility, good densification, and low anion selectivity. |
γ-FeOOH | It is a semiconductor and electrochemically active, can undergo reduction reactions, and has some anionic selectivity. |
β-FeOOH | Crystal structure with tunnel-like cavities, electrochemically active, reducible, high anion selectivity. |
Samples | Ecorr (V vs. SCE) | Eq = 0 (V vs. SCE) | φ = Ecorr − Eq = 0 (V) | |
---|---|---|---|---|
Surface environment | Reference steel | −0.122 | −0.94 | 0.818 |
RE steel | −0.137 | −0.89 | 0.753 | |
Deep environment | Reference steel | −0.108 | −1.01 | 0.902 |
RE steel | −0.254 | −1.01 | 0.756 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zheng, S.; Liu, N.; Liu, Y.; Wang, X.; Qiu, L.; Gong, A. The Role of Rare Earths on Steel and Rare Earth Steel Corrosion Mechanism of Research Progress. Coatings 2024, 14, 465. https://doi.org/10.3390/coatings14040465
Bai Y, Zheng S, Liu N, Liu Y, Wang X, Qiu L, Gong A. The Role of Rare Earths on Steel and Rare Earth Steel Corrosion Mechanism of Research Progress. Coatings. 2024; 14(4):465. https://doi.org/10.3390/coatings14040465
Chicago/Turabian StyleBai, Yuzhen, Shujia Zheng, Na Liu, Yang Liu, Xiaoning Wang, Lina Qiu, and Aijun Gong. 2024. "The Role of Rare Earths on Steel and Rare Earth Steel Corrosion Mechanism of Research Progress" Coatings 14, no. 4: 465. https://doi.org/10.3390/coatings14040465
APA StyleBai, Y., Zheng, S., Liu, N., Liu, Y., Wang, X., Qiu, L., & Gong, A. (2024). The Role of Rare Earths on Steel and Rare Earth Steel Corrosion Mechanism of Research Progress. Coatings, 14(4), 465. https://doi.org/10.3390/coatings14040465