Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency
Abstract
:1. Introduction
2. Structural Design and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.R.; Xu, F.; Li, W.X.; Yang, W.X.; Cheng, S.B.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P.P. Tunable smart mid in-frared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Zhang, F.C.; Camarero, P.; Haro-González, P.; Labrador-Páez, L.; Jaque, D. Optical trapping of optical nanoparticles: Fundamentals and applications. Opto-Electron. Sci. 2023, 2, 230019. [Google Scholar] [CrossRef]
- Jaramillo-Fernandez, J.; Whitworth, G.L.; Pariente, J.A.; Blanco, A.; Garcia, P.D.; Lopez, C.; Sotomayor-Torres, C.M. A Self-Assembled 2D Thermofunctional Material for Radiative Cooling. Small 2019, 15, e1905290. [Google Scholar] [CrossRef] [PubMed]
- Minin, I.V.; Minin, O.V.; Cao, Y.H.; Yan, B.; Wang, Z.B.; Luk’yanchuk, B. Photonic lenses with whispering gallery waves at Janus particles. Opto-Electron. Sci. 2022, 1, 210008. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, T.; Meng, Y.; Yang, R.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.S.; Holdaway, A.; Watt, P.; Pearse, G.D.; Palmer, M.E.; Steer, B.S.C.; Camarretta, N.; McLay, E.; Fraser, S. Early Prediction of Regional Red Needle Cast Outbreaks Using Climatic Data Trends and Satellite-Derived Observations. Remote Sens. 2024, 16, 1401. [Google Scholar] [CrossRef]
- Gigli, C.; Leo, G. All-dielectric χ(2) metasurfaces: Recent progress. Opto-Electron. Adv. 2022, 5, 210093. [Google Scholar] [CrossRef]
- Yue, Z.; Li, J.T.; Li, J.; Zheng, C.L.; Liu, J.Y.; Lin, L.; Guo, L.; Liu, W. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, Y.H.; Ling, L.; Sheng, Z.X.; Cheng, S.B.; Yi, Z.; Wu, P.H.; Zeng, Q.D.; Tang, B.; Ahmad, S. The tunable absorber films of grating structure of AlCuFe quasicrystal with high Q and refractive index sensitivity. Surf. Interfaces 2024, 48, 104248. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, H.; Mao, D.; Du, Y.Q.; Hua, H.; Zhao, W.; Zhao, J. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron. Adv. 2022, 5, 200098. [Google Scholar] [CrossRef]
- Ma, J.; Wu, P.H.; Li, W.X.; Liang, S.R.; Shangguan, Q.Y.; Cheng, S.B.; Tian, Y.H.; Fu, J.Q.; Zhang, L.B. A five-peaks graphene absorber with multiple adjustable and high sensitivity in the far infrared band. Diam. Relat. Mater. 2023, 136, 109960. [Google Scholar] [CrossRef]
- Xiong, H.; Suo, M.; Li, X.K.; Xiao, D.P.; Zhang, H.Q. Design of Energy-Selective Surface with Ultra-wide Shielding band for High-Power Microwave Protection. ACS Appl. Electron. Mater. 2024, 6, 696–701. [Google Scholar] [CrossRef]
- Voti, R.L.; Larciprete, M.C.; Leahu, G.; Sibilia, C.; Bertolotti, M. Optimization of thermochromic VO2 based structures with tunable thermal emissivity. J. Appl. Phys. 2012, 112, 034305. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Ye, H.; Xu, X.; Wu, X.; Wang, J. Performance analyses of building energy on phase transition processes of VO2 windows with an improved model. Appl. Energy 2015, 159, 502–508. [Google Scholar] [CrossRef]
- Gonçalves, A.; Resende, J.; Marques, A.; Pinto, J.; Nunes, D.; Marie, A.; Goncalves, R.; Pereira, L.; Martins, R.; Fortunato, E. Smart optically active VO2 nanostructured layers applied in roof-type ceramic tiles for energy efficiency. Sol. Energy Mater. Sol. Cells 2016, 150, 1–9. [Google Scholar] [CrossRef]
- Hendaoui, A.; Émond, N.; Dorval, S.; Chaker, M.; Haddad, E. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts. Sol. Energy Mater. Sol. Cells 2013, 117, 494–498. [Google Scholar] [CrossRef]
- Uday, K.C.; Nader, E. Modeling vanadium dioxide phase transition due to continuous-wave optical signals. Opt. Express 2015, 23, 445–451. [Google Scholar] [CrossRef]
- Aziznezhad, M.; Goharshadi, E.K.; Mehrkhah, R.; Ghafurian, M.M. Alkaline earth metals doped VO2 nanoparticles for enhanced interfacial solar steam generation. Mater. Res. Bull. 2022, 149, 111705. [Google Scholar] [CrossRef]
- Kruzelecky, R.V.; Haddad, E.; Jamroz, W.; Soltani, M.; Chaker, M.; Colangelo, G. Thinfilm smart radiator tiles with dynamically tuneable thermal emittance. SAE Technol. 2005, 1, 2096. [Google Scholar]
- Guan, H.; Ren, F.F.; Liang, S.H.; Gu, J.X.; Geng, C.C.; Wei, H.; Dou, S.L.; Zhao, J.P.; Li, Y. Ultra-High Transmission Broadband Tunable VO2 Optical Limiter. Laser Photonics Rev. 2023, 17, 2200653. [Google Scholar] [CrossRef]
- Araki, K.; Zhang, R.Z. Simultaneous solar rejection and infrared emission switching using an integrated dielectrics-on-VO2 metasurface. AIP Adv. 2022, 12, 055205. [Google Scholar] [CrossRef]
- Nelson, A.M.; Sanjuan, J.; Guzmán, F. 1/f Noise Mitigation in an Opto-Mechanical Sensor with a Fabry–Pérot Interferometer. Sensors 2024, 24, 1969. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Liu, M.S.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Ahmad, S.; Sun, T.Y. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Buono, W.T.; Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 2022, 5, 210174. [Google Scholar] [CrossRef]
- Batista, C.; Mendes, J.; Teixeira, V.; Carneiro, J. Reactive DC magnetron sputtering of vanadium oxide thin films. Mater. Sci. Forum 2008, 587, 343–347. [Google Scholar] [CrossRef]
- Zhang, T.X.; Tao, C.; Ge, S.X.; Pan, D.W.; Li, B.; Huang, W.X.; Wang, W.; Chu, L.Y. Interfaces coupling deformation mechanisms of liquid-liquid-liquid three-phase flow in a confined microchannel. Chem. Eng. J. 2022, 434, 134769. [Google Scholar] [CrossRef]
- Park, Y.; Asadchy, V.S.; Zhao, B.; Guo, C.; Wang, J.; Fan, S. Violating Kirchhoff’s Law of Thermal Radiation in Semitransparent Structures. ACS Photonics 2021, 8, 2417–2424. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Song, Q.; Wu, P.; Chen, J.; Tang, C. Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding. Opt. Laser Technol. 2023, 158, 108789. [Google Scholar] [CrossRef]
- Krasikov, S.; Tranter, A.; Bogdanov, A.; Kivshar, Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron. Adv. 2022, 5, 210147. [Google Scholar] [CrossRef]
- Luo, J. Dynamical behavior analysis and soliton solutions of the generalized Whitham–Broer–Kaup–Boussineq–Kupershmidt equations. Results Phys. 2024, 60, 107667. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, M.; Jin, J.; Lu, X.; Guo, Y.; Cai, J.; Zhang, F.; Ha, Y.; He, Q.; Xu, M.; et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron. Adv. 2022, 5, 220058. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Y.H.; Yu, L.; Li, Z.L.; Wang, G.; Dai, B.; Wang, Y. Ca3Co4O9-based transverse thermoelectric heat flux sensors with high sensitivity and fast response time. Appl. Phys. Lett. 2024, 124, 013905. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet; University of Missouri-Kansas City: Kansas City, MO, USA, 1987. [Google Scholar]
- Yang, Q.; Xiong, H.; Deng, J.H.; Wang, B.X.; Peng, W.X.; Zhang, H.Q. Polarization-insensitive composite gradi-ent-index metasurface array for microwave power reception. Appl. Phys. Lett. 2023, 122, 253901. [Google Scholar] [CrossRef]
- Tang, C.J.; Nie, Q.M.; Cai, P.G.; Liu, F.X.; Gu, P.; Yan, Z.D.; Huang, Z.; Zhu, M.W. Ultra-broadband near-infrared absorption enhancement of monolayer graphene by multiple-resonator approach. Diam. Relat. Mater. 2024, 141, 110607. [Google Scholar] [CrossRef]
- Leng, Q.; Su, H.H.; Liu, J.Q.; Zhou, L.; Qin, K.; Wang, Q.J.; Fu, J.Q.; Wu, S.; Zhang, X.J. Enhanced second-harmonic generation in monolayer MoS2 on suspended metallic nanostructures by plasmonic resonances. Nanophotonics 2021, 10, 1871–1877. [Google Scholar] [CrossRef]
- Meng, C.; Shui, T.; Yang, W.X. Coherent transfer of optical vortices via backward four-wave mixing in a double-Λ atomic system. Phys. Rev. A 2023, 107, 053712. [Google Scholar] [CrossRef]
- Ayaz, R.M.A.; Balazadeh Koucheh, A.; Sendur, K. Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor. Nanomaterials 2024, 14, 328. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, W.C.; Cheng, S.B.; Yang, W.X.; Yi, Z.; Li, G.F.; Zeng, L.C.; Li, H.L.; Wu, P.H.; Cai, S.S. Terahertz Selective Active Electromagnetic Absorption Film Based on Single-Layer Graphene. Surf. Interfaces 2023, 40, 103042. [Google Scholar] [CrossRef]
- Okamoto, K.; Tanaka, D.; Matsuyama, T.; Wada, K.; Arima, Y.; Tamada, K. Design and Optimization of Silver Nanostructured Arrays in Plasmonic Metamaterials for Sensitive Imaging Applications. Photonics 2024, 11, 292. [Google Scholar] [CrossRef]
- Tsuji, K.; Ishikawa, T.; Umemura, K.; Kawasaki, Y.; Iwaguchi, S.; Shimizu, R.; Ando, M.; Kawamura, S. Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO. Galaxies 2024, 12, 13. [Google Scholar] [CrossRef]
- Zhou, W.; Qin, X.; Lv, M.; Qiu, L.; Chen, Z.; Zhang, F. Design of a New Type of In-Hole Gold-Coated High-Performance Quasi-PCF Sensor Enhanced with Surface Plasmon Resonance. Coatings 2023, 13, 1261. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Huang, H.; Ding, X.; Li, X. Enhancement of Photoelectric Performance Based on Ultrathin Wide Spectrum Solar Absorption in Cruciform Microstructure Germanium Solar Cells. Coatings 2023, 13, 1123. [Google Scholar] [CrossRef]
- Zhou, S.; Bi, K.; Li, Q.; Mei, L.; Niu, Y.; Fu, W.; Han, S.; Zhang, S.; Mu, J.; Tan, L.; et al. Patterned Graphene-Based Metamaterials for Terahertz Wave Absorption. Coatings 2023, 13, 59. [Google Scholar] [CrossRef]
- Xiong, H.; Ma, X.D.; Liu, H.S.; Xiao, D.Q.; Zhang, H.Q. Research on electromagnetic energy absorption and conversion device with four-ring multi-resistance structure. Appl. Phys. Lett. 2023, 123, 153902. [Google Scholar] [CrossRef]
- Ha, Y.L.; Luo, Y.; Pu, M.B.; Zhang, F.; He, Q.; Jin, J.; Xu, M.; Guo, Y.; Li, X.; Li, X.; et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron. Adv. 2023, 6, 230133. [Google Scholar] [CrossRef]
- Serpetzoglou, E.; Konidakis, I.; Kourmoulakis, G.; Demeridou, I.; Chatzimanolis, K.; Zervos, C.; Kioseoglou, G.; Kymakis, E.; Stratakis, E. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron. Sci. 2022, 1, 210005. [Google Scholar] [CrossRef]
- Tao, G.; Yi, Y.; Zang, M.; Zheng, Z.; Yi, Y. Simulated Performance of a Broadband Solar Absorber Composed of Sectioned Au Disk Structures and ZnS/Au Thin Layers. Coatings 2022, 12, 1863. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, W.; Wheeler, C.; Simeoni, M.; Urbani, A.; Gaspari, M.; Mengali, S.; de Groot, C.; Muskens, O.L. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 2022, 11, 4101–4114. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, B.; Liu, H.; Yang, B.; Sun, Y.; Wu, X. Spacecraft smart radiation device with variable emission and low absorption based on phase change material VO2. Int. J. Therm. Sci. 2023, 185, 108039. [Google Scholar] [CrossRef]
- Bahrami, A.; Soltanifar, F.; Fallahi, P.; Meschi, S.S.; Sohani, A. Energy and Economic Advantages of Using Solar Stills for Renewable Energy-Based Multi-Generation of Power and Hydrogen for Residential Buildings. Buildings 2024, 14, 1041. [Google Scholar] [CrossRef]
- Shangguan, Q.; Zhao, Y.; Song, Z.; Wang, J.; Yang, H.; Chen, J.; Liu, C.; Cheng, S.; Yang, W.; Yi, Z. High sensitivity active adjustable graphene absorber for refractive index sensing applications. Diam. Relat. Mater. 2022, 128, 109273. [Google Scholar] [CrossRef]
- Chernomyrdin, N.V.; Musina, G.R.; Nikitin, P.V.; Dolganova, I.N.; Kucheryavenko, A.S.; Alekseeva, A.I.; Wang, Y.; Xu, D.; Shi, Q.; Tuchin, V.V.; et al. Terahertz technology in intraoperative neurodiagnostics: A review. Opto-Electron. Adv. 2023, 6, 220071. [Google Scholar] [CrossRef]
- Ma, X.; Song, R.; Fan, Z.; Zhou, S. Phase-Change Metasurface by U-Shaped Atoms for Photonic Switch with High Contrast Ratio. Coatings 2021, 11, 1499. [Google Scholar] [CrossRef]
- Feng, S.N.A.; Wang, Y.J.; Fei, S.R.; Yan, Z.D.; Yu, L.L.; Chen, J.; Tang, C.J.; Liu, F.X. Dual ultrahigh-Q Fano Resonances of 3D gap metamaterials for slow light from ultraviolet to visible range. Opt. Commun. 2023, 549, 129811. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.J.; Liu, S.X.; Liang, H.W.; Ling, Y.Y.; Su, Y. Metasurfaces for near-eye display applications. Opto-Electron. Sci. 2023, 2, 230025. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Yang, H.; Cheng, S.; Yang, W.X.; Zhang, H.; Yi, Z.; Yi, Y.; Li, H. Active Tunable Terahertz Bandwidth Absorber Based on single layer Graphene. Commun. Theor. Phys. 2023, 75, 045503. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.Q.; Deng, H.M.; Wu, S. Phonon-like plasmonic resonances in a finitely long graphene nanoribbons array. Adv. Opt. Mater. 2018, 6, 1701378. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Deng, X.; Shui, T.; Zhang, T.; Song, Y.; Yang, W.X. Coherent control of double-ring perfect optical vortex via hyper-Raman scattering in a Landau-quantized graphene. Eur. Phys. J. Plus 2023, 138, 737. [Google Scholar] [CrossRef]
- Chowdhury, H.R.; Han, M. Fiber Optic Temperature Sensor System Using Air-Filled Fabry–Pérot Cavity with Variable Pressure. Sensors 2023, 23, 3302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yi, Y.; Li, W.; Liang, S.; Ma, J.; Cheng, S.; Yang, W.; Yi, Y. High Absorptivity and Ultra-Wideband Solar Absorber Based on Ti-Al2O3 Cross Elliptical Disk Arrays. Coatings 2023, 13, 531. [Google Scholar] [CrossRef]
- Wu, Y.F.; Nie, Q.M.; Tang, C.J.; Yan, B.; Liu, F.X.; Zhu, M.W. Bandwidth tunability of graphene absorption enhancement by hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons. Discov. Nano 2024, 19, 19. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.; Zhang, H.; Cheng, S.; Yang, W.; Yi, Z.; Yang, H.; Zhang, J.; Wu, X.; Wu, P. Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal. Phys. Chem. Chem. Phys. 2023, 25, 8489–8496. [Google Scholar] [CrossRef]
- Baeva, M.; Gets, D.; Polushkin, A.; Vorobyov, A.; Goltaev, A.; Neplokh, V.; Mozharov, A.; Krasnikov, D.V.; Nasibulin, A.G.; Mukhin, I.; et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto-Electron. Adv. 2023, 6, 220154. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, H.; Yang, H.; Liang, S.; Zhang, Y.; Cheng, S.; Yang, W.; Yi, Z.; Luo, Y.; Wu, P. A “belfry-typed” narrow-band tunable perfect absorber based on graphene and the application potential research. Diam. Relat. Mater. 2022, 125, 108973. [Google Scholar] [CrossRef]
- Koo, J.H.; Yun, H.W.; Lee, W.C.; Sunwoo, S.H.; Shim, H.J.; Kim, D.-H. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron. Adv. 2022, 5, 210131. [Google Scholar] [CrossRef]
- Barker, A.S.; Verleur, H.W.; Guggenheim, H.J. Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature. Phys. Rev. Lett. 1966, 17, 1286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Sun, H.; Liang, S.; Yi, Z.; Gu, N.; Yi, Y. Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency. Coatings 2024, 14, 535. https://doi.org/10.3390/coatings14050535
Kong X, Sun H, Liang S, Yi Z, Gu N, Yi Y. Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency. Coatings. 2024; 14(5):535. https://doi.org/10.3390/coatings14050535
Chicago/Turabian StyleKong, Xianghao, Hezhi Sun, Shiri Liang, Zao Yi, Naiting Gu, and Yougen Yi. 2024. "Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency" Coatings 14, no. 5: 535. https://doi.org/10.3390/coatings14050535
APA StyleKong, X., Sun, H., Liang, S., Yi, Z., Gu, N., & Yi, Y. (2024). Intelligent Space Thermal Control Radiator Based on Phase Change Material with Partial Visible Transparency. Coatings, 14(5), 535. https://doi.org/10.3390/coatings14050535