Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
4. Conclusions
- The competitive strength of Cr, Co, and Ni alloying elements decreased sequentially for the lattice constant . Specifically, the Cr element exhibits a robust positive promoting effect while the Co and Ni elements exert an inverse influence.
- The influence of the Ni element on the elastic constant in the single curve analysis is opposite to that in the PLS regression analysis, with a positive correlation observed in the former and a negative correlation observed in the latter. The reason for this is that the single curve analysis solely focuses on variations in Ni content while disregarding the impact of Cr and Co content.
- Through the overall analysis of PLS regression, Ni exhibits the most significant competitive advantage for the formation of B, G, and E in L12 particles. However, this competitive advantage manifests as negative effects, with respective values of −0.2223, −0.479, and −0.478. Conversely, Cr and Co elements demonstrate positive promoting effects on their respective competitive advantages.
- When the content of Ni or Co element exceeds 30 at%, a significant variation in the Vickers hardness and yield strength of L12 precipitates is observed. The potential critical points influencing the mechanical properties of L12 precipitates by the content of alloying elements were predicted. Furthermore, the Ni and Co elements exhibit a significant competitive advantage owing to their substantial standardized regression coefficients, although the effect is opposite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, L.Y.; Wang, X.L.; Chang, Y.L.; Wang, Y.P. Improving the mechanical performance of Cu-Cr alloy by dissolving Cu in the Cr second phase. Mater. Charact. 2021, 176, 111104. [Google Scholar] [CrossRef]
- Cui, C.P.; Zhu, X.W.; Li, Q.; Zhang, M.; Zhu, G.P.; Liu, S.L. Study on high temperature strengthening mechanism of ZrO2/Mo alloys. J. Alloys Compd. 2020, 829, 154630. [Google Scholar]
- Hu, W.Q.; Du, Z.F.; Dong, Z.Z.; Yu, L.M.; Ahamad, T.; Ma, Z.Q. The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering. Scr. Mater. 2021, 198, 113831. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, J.M.; Yang, G.H.; He, J.Y.; Lu, Z.P.; Suh, J.Y.; Kawasaki, M.; Ramamurty, U.; Jang, J. Nano-graining a particle-strengthened high-entropy alloy. Scr. Mater. 2019, 163, 24–28. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, T.; Zhou, Q.Y.; Wu, Y.Z.; Duan, S.Y.; Fan, T.W.; Wang, Z.P.; Tang, P.Y. High-throughput prediction of intrinsic properties of L12-(Nix1,Crx2,Cox3)3(Aly1,Tiy2) precipitates. Mater. Today Commun. 2022, 31, 103655. [Google Scholar] [CrossRef]
- Wang, C.L.; Liang, C.J.; Yang, M.J.; Huang, C.; Yao, Z.F.; Qiu, B.; Zhang, K.X.; Xie, Y.G.; Liang, M.L.; Liu, W.J.; et al. Development of the gamma’ phase strengthened high-temperature high-entropy alloys with excellent mechanical properties. Mater. Des. 2022, 221, 110940. [Google Scholar] [CrossRef]
- Pan, Y.W.; Dong, A.P.; Zhou, Y.; Du, D.F.; Wang, D.H.; Zhu, G.L.; Sun, B.D. Enhanced strength-ductility synergy in a novel V-containing γ″-strengthened CoCrNi-based multi-component alloy. Mater. Sci. Eng. A 2021, 816, 141289. [Google Scholar] [CrossRef]
- Ren, B.; Liu, Z.X.; Cai, B.; Wang, M.X.; Shi, L. Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater. Des. 2012, 33, 121–126. [Google Scholar] [CrossRef]
- Qin, S.; Yang, M.X.; Jiang, P.; Wang, J.; Wu, X.L.; Zhou, H.; Yuan, F.P. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility. Acta Mater. 2022, 230, 117847. [Google Scholar] [CrossRef]
- Du, X.H.; Li, W.P.; Chang, H.T.; Yang, T.; Duan, G.S.; Wu, B.L.; Huang, J.C.; Chen, F.R.; Liu, C.T.; Chuang, W.S.; et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat. Commun. 2020, 11, 2390. [Google Scholar] [CrossRef]
- Balikci, E.; Raman, A. Characteristics of the γ′ precipitates at high temperatures in Ni-base polycrystalline superalloy IN738LC. J. Mater. Sci. 2000, 35, 3593–3597. [Google Scholar] [CrossRef]
- Li, Z.Y.; Fu, L.M.; Peng, J.; Zheng, H.; Ji, X.B.; Sun, Y.L.; Ma, S.; Shan, A. Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening. Mater. Charact. 2020, 159, 109989. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Song, G.; Ilavsky, J.; Ghosh, G.; Liaw, P.K. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy. Sci. Rep. 2015, 5, 16081. [Google Scholar] [CrossRef]
- Zhou, H.C.; Lin, Y.J.; Chen, F.; Shen, Q. Effect of precipitation behavior on mechanical properties of a Nb-containing CoCrNi-based high-entropy alloy. Met. Mater. Int. 2022, 29, 674–692. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, C.; Guo, Q.Y.; Ma, Z.Q.; Li, H.J.; Liu, Y.C. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants. Scr. Mater. 2019, 164, 66–70. [Google Scholar] [CrossRef]
- Rawlings, M.J.S.; Liebscher, C.H.; Asta, M.; Dunand, D.C. Effect of titanium additions upon microstructure and properties of precipitation-strengthened Fe-Ni-Al-Cr ferritic alloys. Acta Mater. 2017, 128, 103–112. [Google Scholar] [CrossRef]
- Xing, Z.Q.; Pang, J.Y.; Zhang, H.W.; Ji, Y.; Zhu, Z.W.; Wang, A.M.; Zhang, L.; Li, H.; Fu, H.M.; Zhang, H.F. Optimizing the microstructure and mechanical performance of Fe-Ni-Cr-Al high entropy alloys via Ti addition. J. Alloys Compd. 2023, 943, 169149. [Google Scholar] [CrossRef]
- Sun, K.; Huang, P.; Wang, F. The bimodal nanocoherent precipitates leads to superior strength-ductility synergy in a novel CoCrNi-based medium entropy alloy. J. Alloys Compd. 2022, 909, 164809. [Google Scholar] [CrossRef]
- Wang, F.P.; Wu, J.W.; Guo, Y.X.; Shang, X.J.; Zhang, J.; Liu, Q.B. A novel high-entropy alloy with desirable strength and ductility designed by multi-component substitution for traditional austenitic alloys. J. Alloys Compd. 2023, 937, 168266. [Google Scholar] [CrossRef]
- Yang, Y.H.; Lei, Q.; Zhang, P.; Wang, W.Y.; Zhang, X.K.; Li, Y.P.; Zhou, K.C.; Li, Z. Stabilization of L12 structured Cr3Cu precipitates in a Cu-4.06Cr-1.25Nb alloy with high high-temperature strength. Mater. Res. Lett. 2022, 10, 257–263. [Google Scholar] [CrossRef]
- Strumza, E.; Ezersky, V.; Brosh, E.; Aizenshtein, M.; Hayun, S. The phase evolution and stability of Al0.5CoCrFeNi high-entropy alloy at 600 degrees C. J. Alloys Compd. 2022, 927, 167053. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Muralidharan, G.; Brady, M.P. Development of L12-ordered Ni3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys. Scr. Mater. 2013, 69, 816–819. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Gao, H.Y.; Wang, Y.F.; Wang, J.; Sun, B.D.; Gu, S.W.; You, W.R. Effects of Y addition on microstructure and properties of Al-Zr alloys. Trans. Nonferrous Met. Soc. China 2014, 24, 2239–2243. [Google Scholar] [CrossRef]
- Vitos, L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications; Springer: London, UK, 2007. [Google Scholar]
- Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 1967, 156, 809–813. [Google Scholar] [CrossRef]
- Gyorffy, B.L. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 1972, 5, 2382–2384. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef]
- Vitos, L.; Kollar, J.; Skriver, H.L. Full charge-density calculation of the surface energy of metals. Phys. Rev. B 1994, 49, 16694–16701. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Varga, L.K.; Chen, N.; Delczeg, L.; Vitos, L. Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 2013, 87, 075144. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Gyorffy, B.L.; Pindor, A.J.; Staunton, J.; Stocks, G.M.; Winter, H. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 1985, 15, 1337–1386. [Google Scholar] [CrossRef]
- Zoubi, N.I.A.; Punkkinen, M.P.J.; Johansson, B.; Vitos, L. Completeness of the exact muffin-tin orbitals: Application to hydrogenated alloys. Phys. Rev. B 2010, 81, 045122. [Google Scholar] [CrossRef]
- Korzhavyi, P.A.; Ruban, A.V.; Abrikosov, I.A.; Skriver, H.L. Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B 1995, 51, 5773–5780. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Varga, L.K.; Shen, J.; Vitos, L. Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 2016, 111, 350–358. [Google Scholar] [CrossRef]
- Tian, F.; Delczeg, L.; Chen, N.; Varga, L.K.; Shen, J.; Vitos, L. Structural stability of NiCoFeCrAlxhigh-entropy alloy from ab initio theory. Phys. Rev. B 2013, 88, 085128. [Google Scholar] [CrossRef]
- Girifalco, L.A.; Weizer, V.G. Application of the morse potential function to cubic metals. Phys. Rev. 1959, 114, 687–690. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application to learning methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef]
- Wan, X.D.; Wang, Y.X.; Zhao, D.W. Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm. Int. J. Adv. Manuf. Technol. 2016, 83, 545–559. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Iotova, D.; Kioussis, N.; Lim, S.P. Electronic structure and elastic properties of the Ni3X (X=Mn, Al, Ga, Si, Ge) intermetallics. Phys. Rev. B Condens. Matter 1996, 54, 14413–14422. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Niu, H.Y.; Li, D.Z.; Li, Y.Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Pan, Y. Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations. ACS Sustain. Chem. Eng. 2020, 8, 11024–11030. [Google Scholar] [CrossRef]
Primary Control Variable Ni (at%) | Primary Control Variable Cr (at%) | Primary Control Variable Co (at%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 37.5 | 30 | 22.5 | 15 | 7.5 | 0 | 37.5 | 30 | 22.5 | 15 | 7.5 | 0 | |
37.5 | 30 | 22.5 | 15 | 7.5 | 0 | 0 | 15 | 30 | 45 | 60 | 75 | 37.5 | 30 | 22.5 | 15 | 7.5 | 0 | |
37.5 | 30 | 22.5 | 15 | 7.5 | 0 | 37.5 | 30 | 22.5 | 15 | 7.5 | 0 | 0 | 15 | 30 | 45 | 60 | 75 |
Independent Variables | Dependent Variable | Standardized Regression Coefficients | Projected Importance Indexes | Value (%) |
---|---|---|---|---|
−0.187 | 0.400 | 98.4 | ||
0.643 | 1.375 | |||
−0.456 | 0.974 |
Independent Variables | Dependent Variables | Standardized Regression Coefficients | Projected Importance Indexes | Values (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.442 | −0.118 | −0.467 | 1.013 | 0.247 | 1.268 | 73.2 | 27.1 | 90.6 | ||||
0.330 | 0.262 | 0.234 | 0.763 | 1.091 | 0.591 | |||||||
0.281 | −0.244 | 0.433 | 0.650 | 0.945 | 1.177 |
Independent Variables | Dependent Variables | Standardized Regression Coefficients | Projected Importance Indexes | Values (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | G | E | −0.223 | −0.479 | −0.478 | 1.085 | 1.176 | 1.152 | 24.7 | 88.0 | 86.2 | |
0.192 | 0.157 | 0.173 | 0.740 | 0.283 | 0.306 | |||||||
0.152 | 0.426 | 0.405 | 0.245 | 1.023 | 1.017 |
Independent Variables | Dependent Variables | Standardized Regression Coefficients | Projected Importance Indexes | Values (%) | ||||
---|---|---|---|---|---|---|---|---|
−0.472 | −0.472 | 1.113 | 1.113 | 86.3 | 86.3 | |||
−0.107 | −0.107 | 0.223 | 0.223 | |||||
0.479 | 0.479 | 1.136 | 1.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, L.; Zhao, J.; Wang, Z.; Fan, T.; Zhang, R.; Wu, Y.; Zhou, X.; Zhou, J.; Tang, P. Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates. Coatings 2024, 14, 536. https://doi.org/10.3390/coatings14050536
Liu Y, Wang L, Zhao J, Wang Z, Fan T, Zhang R, Wu Y, Zhou X, Zhou J, Tang P. Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates. Coatings. 2024; 14(5):536. https://doi.org/10.3390/coatings14050536
Chicago/Turabian StyleLiu, Yu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Touwen Fan, Ruizhi Zhang, Yuanzhi Wu, Xiangjun Zhou, Jie Zhou, and Pingying Tang. 2024. "Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates" Coatings 14, no. 5: 536. https://doi.org/10.3390/coatings14050536
APA StyleLiu, Y., Wang, L., Zhao, J., Wang, Z., Fan, T., Zhang, R., Wu, Y., Zhou, X., Zhou, J., & Tang, P. (2024). Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates. Coatings, 14(5), 536. https://doi.org/10.3390/coatings14050536