UV-Curable Silicone-Modified Polyurethane Acrylates for Food Freshness Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NR Covalent-Grafted Polyurethane Acrylates (NR–PUAs)
2.3. Fabrication of UV-Curable Silicone-Modified Coatings (UV Coatings)
2.4. Characterization
3. Results and Discussion
3.1. Preparation of UV COATINGS
3.1.1. Impact of UV Curing Time
3.1.2. Impact of Different NR–PUAs
3.1.3. Impact of nacrylate:nthiol
3.2. Performance of UV Coatings
3.2.1. Adhesive Property
3.2.2. Thermal Properties
3.2.3. The pH-Sensitive Property
3.2.4. Monitoring the Freshness of Shrimp and Pork
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.G.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.M.; Wu, W.N.; Zheng, L.M.; Yu, J.H.; Sun, P.L.; Shao, P. Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chem. 2022, 387, 132908. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.; Bermudez, R.; Mateus, N.; Guedes, A.; Lorenzo, J.M.; de Freitas, V.; Cruz, L. Food smar tag: An innovative dynamic labeling system based on pyranoflavylium-based colorimetric films for real-time monitoring of food freshness. Food Hydrocoll. 2023, 143, 108914. [Google Scholar] [CrossRef]
- Mai, X.T.; Zhang, X.X.; Wang, W.Z.; Zheng, Y.H.; Wang, D.Y.; Xu, W.M.; Liu, F.; Sun, Z.L. Novel PVA/carboxylated cellulose antimicrobial hydrogel grafted with curcumin and ε-polylysine for chilled chicken preservation. Food Chem. 2023, 424, 136345. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.Y.; Meng, Q.T.; Tian, D.H.; Wang, Y.; Zhang, Z.X.; Zhang, Z.Q.; Zhang, R. Red-emitting fluorescent probe for hydrogen sulfide detection and its applications in food freshness determination and in vivo bioimaging. Food Chem. 2023, 427, 136701. [Google Scholar] [CrossRef] [PubMed]
- Grzebieniarz, W.; Tkaczewska, J.; Juszczak, L.; Krzyściak, P.; Cholewa-Wójcik, A.; Nowak, N.; Guzik, P.; Szuwarzyński, M.; Mazur, T.; Jamróz, E. Improving the quality of multi-layer films based on furcellaran by immobilising active ingredients and impact assessment of the use of a new packaging material. Food Chem. 2023, 428, 136759. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.N.; Liu, L.M.; Zhou, Y.; Shao, P. Highly ammonia-responsive starch/PVA film with gas absorption system as the ‘bridge’ for visually spoilage monitoring of animal-derived food. Food Chem. 2024, 430, 137032. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, U.K.; Sudhakaran, N.; Parvathy, P.A.; Abraham, M.; Das, S.; De, S.; Sahoo, S.K. Coconut husk-lignin derived carbon dots incorporated carrageenan based functional film for intelligent food packaging. Int. J. Biol. Macromol. 2024, 266, 131005. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.Z.; Wang, M.S.; Zhou, Z.L.; You, Y.Z.; Wang, G.Y.; Wu, D.R. Cellulose-based intelligent packaging films with antibacterial, UV-blocking, and biodegradable properties for shrimp freshness monitoring. Chem. Eng. J. 2024, 488, 150975. [Google Scholar] [CrossRef]
- Ronte, A.; Chalitangkoon, J.; Foster, E.J.; Monvisade, P. Development of a pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red for food packaging applications. Int. J. Biol. Macromol. 2024, 266, 131212. [Google Scholar] [CrossRef]
- Danchuk, A.I.; Komova, N.S.; Mobarez, S.N.; Doronin, S.Y.; Burmistrova, N.A.; Markin, A.V.; Duerkop, A. Optical sensors for determination of biogenic amines in food. Anal. Bioanal. Chem. 2020, 412, 4023–4036. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Bao, Y.; Li, J.X.; Bi, J.F.; Chen, Q.Q.; Cui, H.J.; Wang, Y.X.; Tian, J.L.; Shu, C.; Wang, Y.H.; et al. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chem. 2022, 388, 132975. [Google Scholar] [CrossRef] [PubMed]
- Karaca, I.M.; Haskaraca, G.; Ayhan, Z.; Gültekin, E. Development of real time-pH sensitive intelligent indicators for monitoring chicken breast freshness/spoilage using real packaging practices. Food Res. Int. 2023, 173, 113261. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.L.; Ge, X.H.; Sun, Y.T.; Mao, M.R.; Yu, H.R.; Chu, R.X.; Wang, Y. Multi-functional pH-sensitive active and intelligent packaging based on highly cross-linked zein for the monitoring of pork freshness. Food Chem. 2023, 404, 134754. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sun, G.; Zhang, C.; Liu, W.; Li, J.; Wang, L. An intelligent film based on Cassia gum containing bromothymol blue-anchored cellulose fibers for real-time detection of meat freshness. J. Agric. Food Chem. 2019, 67, 2066–2074. [Google Scholar] [CrossRef]
- Zia, J.; Mancini, G.; Bustreo, M.; Zych, A.; Donno, R.; Athanassiou, A.; Fragouli, D. Porous pH natural indicators for acidic and basic vapor sensing. Chem. Eng. J. 2021, 403, 126373. [Google Scholar] [CrossRef]
- Nath, V.A.; Raja, V.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications. Food Chem. 2022, 394, 133420. [Google Scholar] [CrossRef]
- Hao, Y.P.; Kang, J.M.; Guo, X.Q.; Sun, M.Y.; Li, H.; Bai, H.T.; Cui, H.X.; Shi, L. pH-responsive chitosan-based film containing oregano essential oil and black rice bran anthocyanin for preserving pork and monitoring freshness. Food Chem. 2023, 403, 134393. [Google Scholar] [CrossRef]
- Martinez-Haro, M.; Pais-Costa, A.J.; Verdelhos, T.; Marques, J.C.; Acevedo, P. Optimising a clearance index based on neutral red as an indicator of physiological stress for bivalves. Ecol. Indic. 2016, 71, 514–521. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Park, B.-D.; Pirayesh, H. Intelligent pH- and ammonia-sensitive indicator films using neutral red immobilized onto cellulose nanofibrils. Carbohydr. Polym. 2022, 296, 119910. [Google Scholar] [CrossRef]
- Patil, R.S.; Thomas, J.; Patil, M.; John, J.; Tanski, T.; Wieczorek, A.N.; Staszuk, M. To shed light on the UV curable coating technology: Current state of the art and perspectives. J. Compos. Sci. 2023, 7, 513. [Google Scholar] [CrossRef]
- Liu, J.L.; Jiao, X.J.; Cheng, F.; Fan, Y.X.; Wu, Y.F.; Yang, X.F. Fabrication and performance of UV cured transparent silicone modified polyurethane-acrylate coatings with high hardness, good thermal stability and adhesion. Prog. Org. Coat. 2020, 144, 105673. [Google Scholar] [CrossRef]
- Cheng, F.; Fan, Y.X.; He, N.; Song, Y.; Shen, J.B.; Gong, Z.S.; Tong, X.M.; Yang, X.F. Castor oil based high transparent UV cured silicone modified polyurethane acrylate coatings with outstanding tensile strength and good chemical resistance. Prog. Org. Coat. 2022, 163, 106624. [Google Scholar] [CrossRef]
- Yang, X.F.; Cheng, F.; Fan, Y.X.; Song, Y.; He, N.; Lai, G.Q.; Gong, Z.S.; Shen, J.B. Highly transparent acrylate epoxidized soybean oil based UV-curable silicone-modified coatings with good thermal stability and flame retardancy. Prog. Org. Coat. 2022, 165, 106769. [Google Scholar] [CrossRef]
- le Gars, M.; Delvart, A.; Roger, P.; Belgacem, M.N.; Bras, J. Amidation of TEMPO- oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym. Sci. 2020, 298, 603–617. [Google Scholar] [CrossRef]
- Jiao, X.J.; Liu, J.L.; Jin, J.; Cheng, F.; Fan, Y.X.; Zhang, L.; Lai, G.Q.; Hua, X.L.; Yang, X.F. UV cured transparent silicone materials with high tensile strength prepared from hyperbranched silicon-containing polymers and polyurethane-acrylates. ACS Omega 2021, 6, 2890–2898. [Google Scholar] [CrossRef]
- Gomes, V.; Pires, A.S.; Mateus, N.; de Freitas, V.; Cruz, L. Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloid 2022, 127, 107501. [Google Scholar] [CrossRef]
- Martínez-Ruano, J.; Suazo, A.; Véliz, F.; Otálora, F.; Conejeros, R.; González, E.; Aroca, G. Electro-fermentation with Clostridium autoethanogenum: Effect of pH and neutral red addition. Environ. Technol. Innov. 2023, 31, 103183. [Google Scholar] [CrossRef]
- Ghica, M.E.; Pauliukaite, R.; Marchand, N.; Devic, E.; Brett, C.M.A. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes. Anal. Chim. Acta 2007, 591, 80–86. [Google Scholar] [CrossRef]
- Ericson, M.N.; Shankar, S.K.; Chahine, L.M.; Omary, M.A.; von Herbing, I.H.; Marpu, S.B. Development of neutral red as a pH/pCO2 luminescent sensor for biological systems. Chemosensors 2021, 9, 210. [Google Scholar] [CrossRef]
- Mross, S.; Zimmermann, T.; Winkin, N.; Kraft, M.; Vogt, H. Integrated multi-sensor system for parallel in-situ monitoring of cell nutrients, metabolites, cell density and pH in biotechno logical processes. Sens. Actuators B Chem. 2015, 236, 937–946. [Google Scholar] [CrossRef]
- Arafa, A.A.; Nada, A.A.; Ibrahim, A.Y.; Sajkiewicz, P.; Zahran, M.K.; Hakeim, O.A. Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int. J. Biol. Macromol. 2021, 182, 1820–1831. [Google Scholar] [CrossRef] [PubMed]
- Akyol, A.; Baykal, D.; Akdaǧ, A.; Şensoy, Ö.; Son, Ç.D. A new ratio-metric pH probe, “ThiAKS Green” for live-cell pH measurements. Photonic Sens. 2023, 13, 230125. [Google Scholar] [CrossRef]
- Son, M.J.; Kim, T.; Lee, S.-W. Facile synthesis of fluorescent mesoporous nanocarriers with pH-sensitive controlled release of naturally derived dieckol. Colloid Surf. A 2023, 657, 130535. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Li, Z.H.; Masood, A.; Rajaselvam, J. Decolourization of azo dye using a batch bioreactor by an indigenous bacterium Enterobacter aerogenes ES014 from the waste water dye effluent and toxicity analysis. Environ. Res. 2022, 205, 112189. [Google Scholar] [CrossRef]
- Elshikh, M.S.; Alarjani, K.M.; Huessien, D.S.; Elnahas, H.A.M.; Esther, A.R. Enhanced biodegradation of chlorpyrifos by bacillus cereus CP6 and klebsiella pneumoniae CP19 from municipal waste water. Environ. Res. 2022, 205, 112438. [Google Scholar] [CrossRef]
- Manente, S.; Pieri, S.D.; Iero, A.; Rigo, C.; Bragadin, M. A comparison between the responses of neutral red and acridine orange:Acridine orange should be preferential and alternative to neutral red as a dye for the monitoring of contaminants by means of biological sensors. Anal. Biochem. 2008, 383, 316–319. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Xu, F.F.; Yun, D.W.; Yong, H.M.; Liu, J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll. 2022, 124, 107293. [Google Scholar] [CrossRef]
- Wang, X.J.; Sun, N.N.; Zhu, H.Y.; Yang, Y.N.; Lai, G.Q.; Yang, X.F. κ-Carrageenan-Based flexible antibacterial and pH−Sensitive hydrogels with phenanthroline covalent conjugation groups. Food Hydrocoll. 2023, 145, 109088. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Monvisade, P. Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: Potential for food and biomedical applications. Carbohydr. Polym. 2021, 260, 117836. [Google Scholar] [CrossRef]
Curing Time/s | Gel–Sol Fraction/wt% | Pencil Hardness |
---|---|---|
20 | 57.3 | 6B |
30 | 75.7 | 4B |
40 | 80.3 | B |
50 | 89.4 | H |
60 | 89.8 | H |
Sample | NR–PUA | Molar Ratio of DMBA to PEG–600 in NR–PUAs | Gel–Sol Fraction/wt% | Pencil Hardness | SD/(g·mL−1) |
---|---|---|---|---|---|
Coating-1 | NR–PUA–1 | 5:95 | 93.1 | 2H | 1.1227 |
Coating-2 | NR–PUA–2 | 10:90 | 92.3 | 2H | 1.1221 |
Coating-3 | NR–PUA–3 | 15:85 | 89.4 | H | 1.1192 |
Coating-4 | NR–PUA–4 | 20:80 | 83.5 | H | 1.1189 |
Coating-5 | NR–PUA–5 | 25:75 | 77.3 | H | 1.1175 |
nacrylate:nthiol | Gel–Sol Fraction/wt% | Pencil Hardness | SD/(g·mL−1) |
---|---|---|---|
0.5:1 | 85.2 | 1 B | 1.1187 |
1:1 | 89.4 | 1 H | 1.1192 |
1.5:1 | 89.1 | 1 H | 1.1199 |
2.0:1 | 87.5 | 1H | 1.1189 |
2.5:1 | 88.9 | 1 H | 1.1191 |
UV Coating-1 | UV Coating-2 | UV Coating-3 | UV Coating-4 | UV Coating-5 | |
---|---|---|---|---|---|
Ratio of shedding area/% | Almost no shedding area | ||||
Adhesive grade | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; Zhu, H.; Sun, N.; Shi, S.; Xie, L.; Miao, J.; Lai, G.; Li, M.; Yang, X. UV-Curable Silicone-Modified Polyurethane Acrylates for Food Freshness Monitoring. Coatings 2024, 14, 728. https://doi.org/10.3390/coatings14060728
He N, Zhu H, Sun N, Shi S, Xie L, Miao J, Lai G, Li M, Yang X. UV-Curable Silicone-Modified Polyurethane Acrylates for Food Freshness Monitoring. Coatings. 2024; 14(6):728. https://doi.org/10.3390/coatings14060728
Chicago/Turabian StyleHe, Na, Hongyu Zhu, Nana Sun, Shaoqing Shi, Libo Xie, Jie Miao, Guoqiao Lai, Meijiang Li, and Xiongfa Yang. 2024. "UV-Curable Silicone-Modified Polyurethane Acrylates for Food Freshness Monitoring" Coatings 14, no. 6: 728. https://doi.org/10.3390/coatings14060728
APA StyleHe, N., Zhu, H., Sun, N., Shi, S., Xie, L., Miao, J., Lai, G., Li, M., & Yang, X. (2024). UV-Curable Silicone-Modified Polyurethane Acrylates for Food Freshness Monitoring. Coatings, 14(6), 728. https://doi.org/10.3390/coatings14060728