Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material of Inserts and Surface Treatment
2.2. Casting and Casting Process Conditions
2.3. Estimation of Hardness of Inserts and Roughness of Bearing Surface of Castings
2.4. Specimen Preparation and Optical Microscopy and SEM
3. Results and Discussion
3.1. Optical Microscopy and SEM Analysis
3.2. Hardness and Surface Roughness
4. Conclusions
- The optical and SEM analysis showed wear and the formation of craters at the bottom, of which the uncovered basic material of the insert is visible. The study of surface morphology revealed the presence of cracks probably caused by the cyclic thermomechanical effect. These failures can be prerequisites for the formation of intermetallic Fe–Al layers. They negatively affect the surface quality of castings, manifesting by increasing average roughness (Ra).
- The PVD-coated inserts achieved a significantly longer lifetime than uncoated inserts concerning the requirements of casting surface roughness (Ra), while the TiN-coated insert performed the best in comparison with TiAlN- and CrAlSiN-coated inserts. The difference in lifetime using TiAlN- and CrAlSiN-coated inserts was only 10,000 shots, with an advantage for TiAlN.
- The polishing performed to prolong the inserts’ lifetime had a minimal effect on the uncoated insert (prolongation of lifetime by 500 shots). It was also applied in the case of TiAlN- and CrAlSiN-coated inserts when they were approaching the critical value of Ra and the prolongation of lifetime ranged from 2000 to 3000 shots.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayer, A.R.; de Oliveira, W.R.; Fals, H.D.C.; Lima, M.J.; Gonçalves, C.S.; Munoz, N.; Corso, J.L.; Pukasiewicz, A.G.M.; Mayer, A.R.; de Oliveira, W.R.; et al. Die soldering and corrosion failure of high temperature tool steel for high-pressure die casting Al alloy. Eng. Fail. Anal. 2024, 161, 108314. [Google Scholar] [CrossRef]
- Nunes, V.; Silva, F.J.; Andrade, M.F.; Alexandre, R.; Baptista, A.P. Increasing the lifespan of high-pressure die cast molds subjected to severe wear. Surf. Coat. Technol. 2017, 332, 319–331. [Google Scholar] [CrossRef]
- Terek, P.; Kovačević, L.; Miletić, A.; Panjan, P.; Baloš, S.; Škorić, B.; Kakaš, D. Effects of die core treatments and surface finishes on the sticking and galling tendency of Al–Si alloy casting during ejection. Wear 2016, 356–357, 122–134. [Google Scholar] [CrossRef]
- Markežič, R.; Naglič, I.; Mole, N.; Šturm, R. Experimental and numerical analysis of failures on a die insert for high pressure die casting. Eng. Fail. Anal. 2019, 95, 171–180. [Google Scholar] [CrossRef]
- Chen, Z.W.; Jahedi, M.Z. Die erosion and its effect on soldering formation in high pressure die casting of aluminium alloy. Mater. Des. 1999, 6, 303–309. [Google Scholar] [CrossRef]
- Kohlhepp, M.; Uggowitzer, P.J.; Hummel, M.; Höppel, H.W. Formation of Die Soldering and the Influence of Alloying Elements on the Intermetallic Interface. Materials 2021, 14, 1580. [Google Scholar] [CrossRef]
- Chen, Z.W. Formation and progression of die soldering during high pressure die casting. Mater. Sci. Eng. 2005, 397, 356–369. [Google Scholar] [CrossRef]
- Domkin, K.; Hattel, J.H.; Thorborg, J. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting. J. Mater. Proc. Technol. 2008, 209, 4051–4061. [Google Scholar] [CrossRef]
- Salem, M.; Le Roux, S.; Dour, G.; Lamesle, P.; Choquet, K.; Rézaï-Aria, F. Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. Int. J. Fatigue 2019, 119, 126–138. [Google Scholar] [CrossRef]
- Sütőová, A.; Grzinčič, M. Creation of Defects Catalogue for Nonconforming Product Identification in the Foundry Organization. Qual. Innov. Prosper. J. 2013, 17, 52–58. [Google Scholar] [CrossRef]
- Teplická, K. Comparison of Using Managerial Instruments in Industry Companies in Slovakia and the Czech Republic. TEM J. 2019, 8, 1191–1197. [Google Scholar] [CrossRef]
- Brezinová, J.; Viňáš, J.; Džupon, M.; Jakubeczyová, D.; Brezina, J.; Sailer, H.; Hašuľ, J.; Považan, M. Use of Duplex PVD Coatings to Increase the Life of Moulds and Cores for die Casting of Aluminium Alloys in the Automotive Industry. Acta Mech. Slovaca 2022, 26, 42–51. [Google Scholar] [CrossRef]
- Bhaskar, M.; Anand, G.; Nalluswamy, T.; Suresh, P. Die Life in Aluminium High-Pressure Die Casting Industries. J. Inst. Eng. India Ser. D 2022, 103, 117–123. [Google Scholar] [CrossRef]
- Gulizia, S.; Jahedi, M.Z.; Doyle, E.D. Performance evaluation of PVD coatings for high pressure die casting. Surf. Coat. Technol. 2001, 140, 200–205. [Google Scholar] [CrossRef]
- Rosso, M.; Ugues, D.; Torres, E.; Perucca, M.; Kapranos, P. Performance enhancements of die casting tools trough PVD nanocoatings. Int. J. Mater. Form. 2008, 1, 1259–1262. [Google Scholar] [CrossRef]
- Paiva, J.M.; Fox-Rabinovich, G.; Junior, E.L.; Stolf, P.; Ahmed, Y.S.; Martins, M.M.; Bork, C.; Veldhuis, S. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool. Materials 2018, 11, 358. [Google Scholar] [CrossRef]
- Midson, S.P.; De Campos Neto, N.D.; May, W.; Korenyi-Both, A.L.; Kaufman, M.J. Laboratory Testing to Characterize the Use of PVD Coatings and Alternate Die Materials for Reducing Soldering and Erosion for Aluminum Die Casting Applications. Int. J. Metalcast. 2024, 18, 1–14. [Google Scholar] [CrossRef]
- Campos Neto, N.D.; Korenyi-Both, A.L.; Vian, C.; Midson, S.P.; Kaufman, M.J. The development of coating selection criteria to minimize die failure by soldering and erosion during aluminum high pressure die casting. J. Mater. Proc. Technol. 2023, 316, 117954. [Google Scholar] [CrossRef]
- Torres, E.; Ugues, D.; Brytan, Z.; Perucca, M. Development of multilayer coatings for forming dies and tools of aluminium alloy from liquid state. J. Phys. D Appl. Phys. 2009, 42, 105306. [Google Scholar] [CrossRef]
- Vetter, J.; Eriksson, A.O.; Reiter, A.; Derflinger, V.; Kalss, W. Quo Vadis: AlCr-Based Coatings in Industrial Applications. Coatings 2021, 11, 344. [Google Scholar] [CrossRef]
- Ugues, D.; Torres, E.; Perucca, M.; Albertinazzi, M.; Rosso, M. Hard coatings to prevent the washout phenomena in high pressure die casting tools. BHM Berg- Hüttenmännische Monatshefte 2006, 151, 109–112. [Google Scholar] [CrossRef]
- Gurada, C.; Mundotia, R.; Mhatre, R.; Kale, A.; Kothari, D. Thermal Fatigue Resistance Studies of Multilayer CrN and AlTiN Coatings Deposited on Plasma Nitrided H-13 Hot Work Steel. Lubricants 2023, 11, 19. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Yang, H.K.; Kim, D.E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef]
- Matei, A.A.; Turcu, R.N.; Pencea, I.; Herghelegiu, E.; Petrescu, M.I.; Niculescu, F. Comparative Characterization of the TiN and TiAlN Coatings Deposited on a New WC-Co Tool Using a CAE-PVD Technique. Crystals 2023, 13, 112. [Google Scholar] [CrossRef]
- Das, D.; Guha, S.; Ghadai, R.; Swain, B.P. A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater. Chem. Phys. 2021, 258, 123866. [Google Scholar] [CrossRef]
- Obrosov, A.; Gulyaev, R.; Ratzke, M.; Volinsky, A.A.; Bolz, S.; Naveed, M.; Weiß, S. XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures. Metals 2017, 7, 52. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Lee, K.O.; Kang, S.S.; Kim, K.H. Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique. J. Mater. Proc. Technol. 2002, 130–131, 260–265. [Google Scholar] [CrossRef]
- Liew, W.Y.; Jie, J.L.; Yan, L.Y.; Dayou, J.; Sipaut, C.S.; Madlan, M.F. Frictional and Wear Behaviour of AlCrN, TiN, TiAlN Single-layer Coatings, and TiAlN/AlCrN, AlN/TiN Nano-multilayer Coatings in Dry Sliding. Proc. Eng. 2013, 68, 512–517. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Wang, C.; Yuen, M.-F.; Wang, M.; Qian, T.; Matsumoto, M.; Yan, J. Comparison of tribological and electrochemical properties of TiN, CrN, TiAlN and a-C:H coatings in simulated body fluid. Mater. Chem. Phys. 2015, 158, 74–81. [Google Scholar] [CrossRef]
- Berger, C.; Scheerer, H.; Ellermeier, J. Modern materials for forming and cutting tools—Overview. Mater. Werkst. 2010, 41, 5–16. [Google Scholar] [CrossRef]
- Valleti, P.C.; Venu Gopal, A.; Joshi, S.V. CrAlSiN nanocomposite thin films for high-speed machining applications. Mater. Manuf. Process. 2018, 33, 371–377. [Google Scholar] [CrossRef]
- Brezinová, J.; Džupon, M.; Puchý, V.; Brezina, J.; Maruschak, P.; Guzanová, A.; Sobotová, L.; Badida, M. Research on the Tribological Properties of a New Generation of Multi-Layer Nanostructured PVD Coatings for Increasing the Technological Lifetime of Moulds. Metals 2024, 14, 131. [Google Scholar] [CrossRef]
- Tošenovský, F.; Tošenovský, J.; Blaštíková, M. Selected Problems in Statistical Modelling of Metallurgical Processes. In Proceedings of the 28th International Conference on Metallurgy and Materials, Brno, Czech Republic, 22–24 May 2019. [Google Scholar] [CrossRef]
- Ding, R.; Yang, H.; Li, S.; Hu, G.; Mo, J.; Chu, M.; Paddea, S.; Zhang, S.; Zhang, P.; Liu, Z.; et al. Failure analysis of H13 steel die for high pressure die casting Al alloy. Eng. Fail. Anal. 2021, 124, 105330. [Google Scholar] [CrossRef]
- Mitterer, C.; Holler, F.; Üstel, F.; Heim, F.D. Application of hard coatings in aluminium die casting—Soldering, erosion and thermal fatigue behaviour. Surf. Coat. Technol. 2000, 125, 233–239. [Google Scholar] [CrossRef]
- Wiedenegger, A.; Bruckwilder, J.; Deutsch, C. Ecological and Economic Benefits of Additive Manufacturing in High Pressure Die Casting. BHM Berg- Hüttenmännische Monatshefte 2021, 166, 237–242. [Google Scholar] [CrossRef]
- Kobčar, D.; Kosec, L.; Kosec, B.; Tušek, J. Thermo fatigue cracking of die casting dies. Ing. Fail. Anal. 2012, 20, 43–53. [Google Scholar] [CrossRef]
- ISO 26423; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Coating Thickness by Crater-Grinding Method. ISO: Geneva, Switzerland, 2009.
- IATF 16949:2015; Quality Management System. International Automotive Task Force: Torino, Italy, 2016.
- ASTM A956:2022; Standard Test Method for Leeb Hardness Testing of Steel Products. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- DIN EN 50156-1:2016; Electrical Equipment for Furnaces and Ancillary Equipment. VDE: Berlin, Germany, 2016.
- JSA-JIS B 0601; Geometrical Product Specifications (GPS}—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. JSA: Tokyo, Japan, 2013.
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2021.
C | Si | Mn | Cr | Mo | V | Fe |
---|---|---|---|---|---|---|
0.38 | 0.90 | 0.40 | 5.20 | 1.30 | 0.45 | balance |
Fe | Si | Mn | Ni | Cr | Ti | Cu | Pb | Mg | Zn | Sn | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
max 1.1 | 10– 12 | max 0.55 | max 0.45 | max 0.15 | max 0.25 | 1.5– 2.5 | max 0.25 | max 0.3 | max 1.7 | max 0.15 | balance |
Measured Parameters | Uncoated | CrAlSiN- Coated | TiAlN-Coated | TiN-Coated |
---|---|---|---|---|
Hardness (HRC) | ||||
Mean | 48 | 52 | 53 | 50 |
SD | 0.4 | 0.9 | 1.1 | 0.6 |
Roughness (µm) | ||||
Ra | 0.10 | 0.34 | 0.39 | 0.46 |
Rz | 0.6 | 1.1 | 1.6 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sütőová, A.; Kočiško, R.; Petroušek, P.; Kotus, M.; Petryshynets, I.; Pylypenko, A. Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings 2024, 14, 1043. https://doi.org/10.3390/coatings14081043
Sütőová A, Kočiško R, Petroušek P, Kotus M, Petryshynets I, Pylypenko A. Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings. 2024; 14(8):1043. https://doi.org/10.3390/coatings14081043
Chicago/Turabian StyleSütőová, Andrea, Róbert Kočiško, Patrik Petroušek, Martin Kotus, Ivan Petryshynets, and Andrii Pylypenko. 2024. "Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings" Coatings 14, no. 8: 1043. https://doi.org/10.3390/coatings14081043
APA StyleSütőová, A., Kočiško, R., Petroušek, P., Kotus, M., Petryshynets, I., & Pylypenko, A. (2024). Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings, 14(8), 1043. https://doi.org/10.3390/coatings14081043