Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old Concepts in Thermoelectric Materials. Angew. Chem. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science 2017, 357, 1369. [Google Scholar] [CrossRef] [PubMed]
- Russ, B.; Glaudell, A.; Urban, J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- D’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric Materials and Applications: A Review. Energies 2023, 16, 6409. [Google Scholar] [CrossRef]
- Ioffe, A.F. Semiconductor Thermoelements and Thermoelectric Cooling; Infosearch Ltd.: London, UK, 1957. [Google Scholar]
- Ioffe, A.F. The Revival of Thermoelectricity. Sci. Am. 1958, 199, 31–37. [Google Scholar]
- Vedernikov, M.V.; Iordanishvili, E.K. AF Ioffe and Origin of Modern Semiconductor Thermoelectric Energy Conversion. In Proceedings of the Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365), Nagoya, Japan, 28–28 May 1998; pp. 37–42. [Google Scholar]
- Walia, S.; Balendhran, S.; Nili, H.; Zhuiykov, S.; Rosengarten, G.; Wang, Q.H.; Bhaskaran, M.; Sriram, S.; Strano, M.S.; Kalantar-zadeh, K. Transition metal oxides—Thermoelectric properties. Progr. Mater. Sci. 2013, 58, 1443–1489. [Google Scholar] [CrossRef]
- Dolyniuk, J.-A.; Owens-Baird, B.; Wang, J.; Zaikina, J.V.; Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 2016, 108, 1–46. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, M.; Liu, Z. Research progress on preparation methods of skutterudite. Inorganics 2022, 10, 106. [Google Scholar] [CrossRef]
- Aversano, F.; Palumbo, M.; Ferrario, A.; Boldrini, S.; Fanciulli, C.; Baricco, M.; Castellero, A. Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes. Intermetallics 2020, 127, 106988. [Google Scholar] [CrossRef]
- Bano, S.; Chetty, R.; Jayachandran, B.; Mori, T. Mg3(Sb,Bi)2-based materials and devices rivalling bismuth telluride for thermoelectric power generation and cooling. Device 2024, 2, 100408. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, P.; Lou, Q.; Zhang, Z.; Huang, S.; Lu, Y.; He, J. Design guidelines for chalcogenide-based flexible thermoelectric materials. Mater. Adv. 2021, 2, 2584–2593. [Google Scholar] [CrossRef]
- Artini, C.; Pennelli, G.; Graziosi, P.; Li, Z.; Neophytou, N.; Melis, C.; Colombo, L.; Isotta, E.; Lohani, K.; Scardi, P.; et al. Roadmap on Thermoelectricity. Nanotechnology 2023, 34, 292001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, C.; Elquist, A.M.; Ghods, A.; Saravade, V.G.; Lu, N.; Ferguson, I. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications. In Proceedings of the Proceedings Volume 10533, Oxide-based Materials and Devices IX, San Francisco, CA, USA, 27 January–1 February 2018; p. 105331R. [Google Scholar]
- Zhou, B.; Chen, L.; Li, C.; Qi, N.; Chen, Z.; Su, X.; Thang, X.F. Significant Enhancement in the Thermoelectric Performance of Aluminum-doped ZnO Tuned by Pore Structure. ACS Appl. Mater. Interfaces 2020, 12, 51669–51678. [Google Scholar] [CrossRef]
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef]
- Noori, A.; Masoumi, S.; Hashemi, N. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films. J. Phys. Conf. Ser. 2017, 939, 012013. [Google Scholar] [CrossRef]
- Jia, J.; Oka, N.; Kusayanagi, M.; Nakatomi, S.; Shigesato, Y. Origin of Carrier Scattering in Polycrystalline Al-doped ZnO Films. Appl. Phys. Express 2014, 7, 105802. [Google Scholar] [CrossRef]
- Zhou, H.M.; Yi, D.; Yu, Z.; Xiao, L.; Li, J. Preparation of Aluminum Doped Zinc Oxide Films and the Study of their Microstructure, Electrical and Optical Properties. Thin Solid. Films 2007, 15, 6909–6914. [Google Scholar] [CrossRef]
- Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K. Effect on Substrate on Thermoelectric Properties of Al-doped ZnO Thin Films. Appl. Phys. Lett. 2013, 102, 253903. [Google Scholar] [CrossRef]
- Nam, W.H.; Lim, Y.S.; Choi, S.M.; Seo, W.S.; Lee, J.Y. High-Temperature Charge Transport and Thermoelectric Properties of a Degenerately Al-doped ZnO Nanocomposite. J. Mater. Chem. 2012, 22, 14633–14638. [Google Scholar] [CrossRef]
- Tonny, K.N.; Rafique, R.; Sharmin, A.; Bashar, M.S.; Mahmood, Z.H. Electrical, Optical and Structural Properties of Transparent Conducting Al doped ZnO (AZO) Deposited by Sol-Gel Spin Coating. AIP Adv. 2018, 8, 065307. [Google Scholar] [CrossRef]
- Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors. PRL 2006, 96, 045901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Minnich, A.J. The Best Nanoparticle Size Distribution for Minimum Thermal Conductivity. Sci. Rep. 2015, 5, 8995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, G.; Yang, J.; Mao, W.; Wang, J.; Liu, Z.; Dong, Y.; Yang, S.; Li, J. Fabrication of AZO and FAZO Films Using Low-cost Spin-Coating Method. Opt. Mater. 2022, 126, 112204. [Google Scholar] [CrossRef]
- Lee, W.; Leem, J.Y. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method. J. Korean Phys. Soc. 2018, 72, 610–614. [Google Scholar] [CrossRef]
- Nga, Z.N.; Chana, K.Y.; Tohsophonb, T. Effects of Annealing Temperature on ZnO and AZO Films Prepared by Sol–Gel Technique. Appl. Surf. Sci. 2012, 258, 9604–9609. [Google Scholar] [CrossRef]
- Kumar, K.D.A.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; AlFaify, S. Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: A film for key optoelectronic applications. Appl. Phys. A 2017, 123, 801. [Google Scholar] [CrossRef]
- Sengupta, J.; Sahoo, R.K.; Mukherjee, C.D. Effect of annealing on the structural, topographical and optical properties of sol–gel derived ZnO and AZO thin films. Mater. Lett. 2012, 83, 84–87. [Google Scholar] [CrossRef]
- Rijckaert, H. Preparation of the S/TEM Lamella of Commercial REBa2Cu3O7-x Coated Conductors by FIB. IEEE Trans. Appl. Supercond. 2024, 34, 7500707. [Google Scholar] [CrossRef]
- Baba, T.; Baba, T.; Mori, T. Fourier Transform Thermoreflectance method Under Front-Heat Front-Detect Configuration. Int. J. Thermophys. 2021, 45, 61. [Google Scholar] [CrossRef]
- Chen, X.; Guan, W.; Fang, G.; Zhao, X.Z. Influence of substrate temperature and port-treatment on the properties of AnO:Al thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 2005, 252, 1561–1567. [Google Scholar] [CrossRef]
- Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition. Eur. Phys. J. Plus 2016, 131, 328. [Google Scholar] [CrossRef]
- Wang, W.P.; Chen, Y.Y.; Hsu, J.C.; Wang, C. Structural, optical and electrical properties of aluminum doped ZnO films annealed in air and hydrogen atmosphere. J. Non-Cryst. Solids 2014, 383, 131–136. [Google Scholar] [CrossRef]
- Saadi, H.; Rhouma, F.I.H.; Benzarti, Z.; Bougrioua, Z.; Guemazi, S.; Khirouni, K. Electrical Conductivity Improvement of Fe doped ZnO Nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Abdullin, K.A.; Gabdullin, M.T.; Zhumagulov, S.K.; Ismailova, G.A.; Gritsenko, L.V.; Kedruk, Y.Y.; Mirzaeian, M. Stabilization of the Surface of ZnO Films and Elimination of the Aging Effect. Materials 2021, 14, 6535. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Ma, Y.; Xu, Z.; Wu, L.; Yang, Y.; Tsang, S.W.; Chen, S. The Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization. J. Phys. Chem. Lett. 2020, 11, 5863–5870. [Google Scholar] [CrossRef]
- Darwish, A.M.; Muhammad, A.; Sarkisov, S.S.; Mele, P.; Saini, S.; Liu, J.; Shiomi, J. Thermoelectric Properties of Al-doped ZnO Composite Films with Polymer Nanoparticles Prepared by Pulsed Laser Deposition. Composites Part. B 2019, 167, 406–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giribaldi, A.; Giordani, C.; Latronico, G.; Bourgès, C.; Baba, T.; Piscino, C.; Marinova, M.; Mori, T.; Artini, C.; Rijckaert, H.; et al. Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings 2025, 15, 107. https://doi.org/10.3390/coatings15010107
Giribaldi A, Giordani C, Latronico G, Bourgès C, Baba T, Piscino C, Marinova M, Mori T, Artini C, Rijckaert H, et al. Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings. 2025; 15(1):107. https://doi.org/10.3390/coatings15010107
Chicago/Turabian StyleGiribaldi, Alberto, Cristiano Giordani, Giovanna Latronico, Cédric Bourgès, Takahiro Baba, Cecilia Piscino, Maya Marinova, Takao Mori, Cristina Artini, Hannes Rijckaert, and et al. 2025. "Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films" Coatings 15, no. 1: 107. https://doi.org/10.3390/coatings15010107
APA StyleGiribaldi, A., Giordani, C., Latronico, G., Bourgès, C., Baba, T., Piscino, C., Marinova, M., Mori, T., Artini, C., Rijckaert, H., & Mele, P. (2025). Enhancing Thermoelectric Performance: The Impact of Carbon Incorporation in Spin-Coated Al-Doped ZnO Thin Films. Coatings, 15(1), 107. https://doi.org/10.3390/coatings15010107