Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups
Abstract
:1. Introduction
2. Materials and Methods
- A classical three-electrode electrochemical cell in which carbon steel plates (S235JR) were used as working electrodes with an exposed area of 4.91 cm2. In this arrangement, a saturated calomel electrode served as a reference and a carbon rod as a counter electrode.
- Two-electrode disc system. A pair of identical metal plates (1 cm × 1 cm) [25] were embedded in parallel in epoxy resin with a 1 mm distance between the plates. In this setup, one steel plate EN 10025 S235JR served as the working electrode and the other as a counter and reference electrode.
- Comb-like electrode [15]. It was made of carbon steel plates (EN 10025 S235JR) with an exposed area of 2 × 0.1 cm, where 8 identical plates were separated from each other with 0.5 mm thick foils before being fixed in epoxy resin [9]. Four of them served as counter electrodes and the other four as working electrodes. A schematic representation of all three experimental setups is shown in Figure 1.
3. Results and Discussion
3.1. Studies in a Classical Three-Electrode Electrochemical Cell
- j0corr—corrosion current density in a blank solution;
- jinhcorr—corrosion current density in a solution with an inhibitor;
- IE—inhibition efficiency.
Concentration of Inhibitor (g/L) | Inhibitor | Ecorr (mV) | jcorr (µA/cm2) | βA (mV/dec) | −βC (mV/dec) | IE (%) |
---|---|---|---|---|---|---|
BLANK | −750.2 | 3.485 | 123.0 | 182.5 | ||
10 | A | −782.7 | 16.576 | 183.6 | 229.6 | - |
20 | A | −213.6 | 0.124 | 334.9 | 62.6 | 96.44 |
40 | A | −118.1 | 0.131 | 219.1 | 164.4 | 96.24 |
4 | B | −161.2 | 0.130 | 380.5 | 71.9 | 96.27 |
10 | B | −151.4 | 0.224 | 681.5 | 86.3 | 93.57 |
20 | B | −171.7 | 0.316 | 744.5 | 86.6 | 90.93 |
40 | B | −251.9 | 0.537 | 196.5 | 129.5 | 84.59 |
- Rpinh—the resistance of the steel in a solution with an inhibitor;
- Rp0—the resistance of the steel in the blank solution;
- IE—inhibition efficiency for the measured concentration.
3.2. Studies on the Two-Electrode Disc System
3.3. Studies in the Comb-like Electrode System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SP0775-2018; Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. NACE: Huston, TX, USA, 2018.
- Ahmad, Z. Principles of Corrosion Engineering and Corrosion Control, 1st ed.; Butterworth-Heinemann/IChemE Series; Elsevier: Oxford, UK, 2006; pp. 352–380. [Google Scholar]
- Solovyeva, V.A.; Almuhammadi, K.H.; Badeghaish, W.O. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review. Materials 2023, 16, 1795. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Lam, C.N.C.; Wong, D.; Asselin, E. Evaluation of the cathodic disbondment resistance of pipeline coatings—A review. Prog. Org. Coat. 2020, 146, 105728. [Google Scholar] [CrossRef]
- Honarvar Nazari, M.; Zhang, Y.; Mahmoodi, A.; Xu, G.; Yu, J.; Wu, J.; Shi, X. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Prog. Org. Coat. 2022, 162, 106573. [Google Scholar] [CrossRef]
- Angst, U.M. A critical review of the science and engineering of cathodic protection of steel in soil and concrete. Corrosion 2019, 75, 1420–1433. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Zehra, S.; Aslam, J. A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. J. Mol. Liq. 2022, 364, 119992. [Google Scholar] [CrossRef]
- Galleguillos Madrid, F.M.; Soliz, A.; Cáceres, L.; Bergendahl, M.; Leiva-Guajardo, S.; Portillo, C.; Olivares, D.; Toro, N.; Jimenez-Arevalo, V.; Páez, M. Green Corrosion Inhibitors for Metal and Alloys Protection in Contact with Aqueous Saline. Materials 2024, 17, 3996. [Google Scholar] [CrossRef]
- Subramanian, A.; Natesan, M.; Muralidharan, V.S.; Balakrishnam, K.; Vasudevan, T. An Overview: Vapor Phase Corrosion Inhibitors. Corrosion 2000, 56, 144–155. [Google Scholar] [CrossRef]
- Vuorinen, E.; Kálmán, E.; Focke, W. Introduction to Vapour Phase Corrosion Inhibitors in Metal Packaging. Surf. Eng. 2004, 20, 281–284. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Cano, E.; Mora, E.M. Volatile Corrosion Inhibitors: A Review. Anti-Corros. Method Mater. 2005, 52, 71–77. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Mahanwar, P.A. Recent Developments in the Volatile Corrosion Inhibitor (VCI) Coatings for Metal: A Review. J. Coat. Technol. Res. 2018, 15, 789–807. [Google Scholar] [CrossRef]
- Zang, D.; An, Z.; Pan, Q.; Gao, L.; Zhou, G. Volatile Corrosion Inhibitor Film Formation on Carbon Steel Surface and Its Inhibition Effect on the Atmospheric Corrosion of Carbon Steel. Appl. Surf. Sci. 2006, 253, 1343–1348. [Google Scholar] [CrossRef]
- Zhang, D.-Q.; An, Z.-X.; Pan, Q.-Y.; Gao, L.-X.; Zhou, G.-D. Comparative Study of Bis-Piperidiniummethyl-Urea and Mono-piperidiniummethyl-Urea as Volatile Corrosion Inhibitors for Mild Steel. Corros. Sci. 2006, 48, 1437–1448. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Ma, T.-F.; Gao, L.-X.; Zhang, D.-Q.; Wei, G.-A.; Yan, H.-B.; Wei, S.-L. Vapor Phase Assembly of Urea–Amine Compounds and Their Protection Against the Atmospheric Corrosion of Carbon Steel. J. Coat. Technol. Res. 2020, 17, 503–515. [Google Scholar] [CrossRef]
- Chyhyrynets, O.E.; Vorob’iova, V.I. Anticorrosion Properties of the Extract of Rapeseed Oil Cake as a Volatile Inhibitor of the Atmospheric Corrosion of Steel. Mater. Sci. 2013, 49, 39–45. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L.; Zhang, G.; Qiu, Y.; Guo, X. Benzotriazole as a Volatile Corrosion Inhibitor During the Early Stage of Copper Corrosion Under Adsorbed Thin Electrolyte Layers. Corros. Sci. 2012, 65, 214–222. [Google Scholar] [CrossRef]
- Kumar, H.; Yadav, V. Corrosion Characteristics of Mild Steel Under Different Atmospheric Conditions by Vapor Phase Corrosion Inhibitors. Am. J. Mater. Sci. Eng. 2013, 1, 34–39. [Google Scholar] [CrossRef]
- Gao, G.; Liang, C.H. 1,3-Bis-Diethylamino-Propan-2-Ol as Volatile Corrosion Inhibitor for Brass. Corros. Sci. 2007, 49, 3479–3493. [Google Scholar] [CrossRef]
- Ansari, F.A.; Verma, C.; Siddiqui, Y.S.; Ebenso, E.E.; Quraishi, M.A. Volatile Corrosion Inhibitors for Ferrous and Non-Ferrous Metals and Alloys: A Review. Int. J. Corros. Scale Inhib. 2018, 7, 126–150. [Google Scholar] [CrossRef]
- Furman, A.Y.; Kharshan, M.; Chandler, C.J. Performance and Testing of Vapor Phase Corrosion Inhibitors. In Proceedings of the CORROSION 2004 Conference Papers, New Orleans, LA, USA, 28 March–1 April 2004; NACE International: Houston, TX, USA, 2004; p. 04418. [Google Scholar]
- Olivo, J.D.; Mugongo, D. Case Studies on Vapor Corrosion Inhibitor Monitoring Using Electrical Resistance Probes for Oil and Gas Assets. In Proceedings of the AMPP CORROSION 2022 Conference Papers, San Antonio, TX, USA, 6–10 March 2022; AMPP: Huston, TX, USA, 2022; p. 17855. [Google Scholar]
- Zhang, X.; He, W.; Odnevall Wallinder, I.; Pan, J.; Leygraf, C. Determination of Instantaneous Corrosion Rates and Runoff Rates of Copper from Naturally Patinated Copper During Continuous Rain Events. Corros. Sci. 2002, 44, 2131–2151. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Ma, L.; Wang, W.; Zhang, M. Study on the Performance and Mechanism of Morpholine Salt Volatile Corrosion Inhibitors on Carbon Steel. Coatings 2024, 14, 997. [Google Scholar] [CrossRef]
- Shi, Y.; Tada, E.; Nishikata, A. A Method for Determining the Corrosion Rate of a Metal Under a Thin Electrolyte Film. J. Electrochem. Soc. 2015, 162, C135–C139. [Google Scholar] [CrossRef]
- Yadav, A.P.; Nishikata, A.; Tsuru, T. Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet-Dry Conditions—Influence of Time of Wetness. Corros. Sci. 2004, 46, 169–181. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Li, Y.; Wang, F. EIS Monitoring Study of Atmospheric Corrosion Under Variable Relative Humidity. Corros. Sci. 2010, 52, 3677–3686. [Google Scholar] [CrossRef]
- Slaiman, Q.J.M.; Davies, D. Eurof. Mechanism of the Corrosion Inhibition of Fe by Sodium Benzoate—II. The Inhibitive Properties of Sodium Benzoate in De-Aerated and Air-Saturated Solutions. Corros. Sci. 1971, 11, 683–692. [Google Scholar] [CrossRef]
- Page, C.L.; Mayne, J.E.O. The Anomalous Effect of Concentration on Inhibition of the Corrosion of Iron by Solutions of Sodium Benzoate. Corros. Sci. 1972, 12, 679–681. [Google Scholar] [CrossRef]
- Rammelt, U.; Koehler, S.; Reinhard, G. Synergistic Effect of Benzoate and Benzotriazole on Passivation of Mild Steel. Corros. Sci. 2008, 50, 1659–1663. [Google Scholar] [CrossRef]
- Xia, D.-H.; Deng, C.-M.; Macdonald, D. Electrochemical Measurements Used for Assessment of Corrosion and Protection of Metallic Materials in the Field: A Critical Review. J. Mater. Sci. Technol. 2022, 112, 151–181. [Google Scholar] [CrossRef]
Concentration of Inhibitor (g/L) | Inhibitor | Ecorr (mV) | jcorr (µA/cm2) | βA (mV/dec) | −βC (mV/dec) | IE (%) |
---|---|---|---|---|---|---|
BLANK | −733.0 | 4.429 | 74.5 | 259.4 | ||
10 | A | −797.8 | 9.834 | 150.4 | 127.9 | - |
20 | A | −299.4 | 0.504 | 85.6 | 83.7 | 88.62 |
40 | A | −431.4 | 1.037 | 122.4 | 215.3 | 76.59 |
10 | B | −682.0 | 4.943 | 74.0 | 255.9 | - |
20 | B | −141.6 | 0.278 | 657.3 | 80.2 | 93.72 |
40 | B | −605.2 | 1.604 | 87.9 | 318.3 | 63.78 |
Solution | Q1 (µS sncm−2) | n1 | R1 (kΩ cm2) | Q2 (µS sncm−2) | n2 | R2 (kΩ cm2) | IE (%) |
---|---|---|---|---|---|---|---|
BLANK | 560 | 0.98 | 1.70 | 350 | 0.81 | 1.84 | |
Inhibitor A | 52.83 | 0.91 | 62.34 | 29.37 | 0.74 | 65.43 | 97.23 |
Inhibitor B | 84.55 | 0.90 | 38.32 | 51.92 | 0.67 | 66.28 | 96.61 |
Solution | Q1 (µS sncm−2) | n1 | R1 (kΩ cm2) | Q2 (µS sncm−2) | n2 | R2 (kΩ cm2) | IE (%) |
---|---|---|---|---|---|---|---|
BLANK | 399.10 | 0.81 | 0.26 | 169 | 0.80 | 3.29 | |
Inhibitor A | 301.70 | 0.83 | 0.72 | 63.65 | 0.50 | 9.34 | 64.71 |
Inhibitor B | 217.40 | 0.85 | 1.83 | 96.03 | 0.57 | 13.12 | 76.25 |
Solution | Rct* (kΩ cm) | Qdl* (μF cm−1 sn−1) | n | IE (%) |
---|---|---|---|---|
BLANK | 5.50 | 12.4 | 0.66 | |
Inhibitor A | 142.4 | 83.0 | 0.76 | 96.14 |
Inhibitor B | 27.61 | 43.8 | 0.70 | 80.08 |
Solution | Q1 (µS sncm−2) | n1 | R1 (kΩ cm2) | Q2 (µS sncm−2) | n2 | R2 (kΩ cm2) | IE (%) |
---|---|---|---|---|---|---|---|
BLANK | 41.76 | 0.58 | 0.89 | 72.91 | 0.85 | 1.20 | |
Inhibitor A | 42.41 | 0.85 | 0.03 | 13.12 | 0.96 | 270.3 | 99.23 |
Inhibitor B | 136.70 | 0.58 | 0.82 | 18.27 | 1.00 | 9.84 | 80.39 |
Solution | Q1 (µS sncm−2) | n1 | R1 (kΩ cm2) | Q2 (µS sncm−2) | n2 | R2 (kΩ cm2) | IE (%) |
---|---|---|---|---|---|---|---|
BLANK | 39.77 | 0.76 | 0.64 | 19.33 | 0.76 | 4.6 | |
Inhibitor A | 18.21 | 0.84 | 4.34 | 11.0 | 0.59 | 295.0 | 98.25 |
Inhibitor B | 13.85 | 0.86 | 87.04 | 13.58 | 0.62 | 216.9 | 98.27 |
Solution | Q1/ (µS sncm−2) | n1 | R1/ (kΩ cm2) | Q2/ (µS sncm−2) | n2 | R2/ (kΩ cm2) | IE/(%) |
---|---|---|---|---|---|---|---|
BLANK | 108.0 | 0.74 | 0.28 | 49.05 | 0.50 | 2.64 | |
Inhibitor A | 32.04 | 0.84 | 3.25 | 136.60 | 0.53 | 39.67 | 93.20 |
Inhibitor B | 32.34 | 0.84 | 4.68 | 115.50 | 0.62 | 38.33 | 93.21 |
Conditions | IE (%) | |||
---|---|---|---|---|
Acid Rain | 1% NaCl | |||
Inh_A | Inh_B | Inh_A | Inh_B | |
Three-electrode electrochemical cell | 97.23 | 96.61 | 64.71 | 76.25 |
Thin layer disc el. | 96.14 | 80.08 | 99.23 | 80.39 |
Thin layer comb el. | 98.25 | 98.27 | 93.20 | 93.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelesk, A.; Otmačić Ćurković, H. Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups. Coatings 2025, 15, 94. https://doi.org/10.3390/coatings15010094
Pelesk A, Otmačić Ćurković H. Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups. Coatings. 2025; 15(1):94. https://doi.org/10.3390/coatings15010094
Chicago/Turabian StylePelesk, Antonio, and Helena Otmačić Ćurković. 2025. "Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups" Coatings 15, no. 1: 94. https://doi.org/10.3390/coatings15010094
APA StylePelesk, A., & Otmačić Ćurković, H. (2025). Comparative Study of Volatile Corrosion Inhibitors in Various Electrochemical Setups. Coatings, 15(1), 94. https://doi.org/10.3390/coatings15010094