Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preparation Principle of AgNW TCFs
3.2. Effect of Coating Height on the Optoelectrical Property of AgNW TCFs
3.3. Effect of CMC on the Optoelectrical Property of AgNW TCFs
3.4. Effect of PVA on the Optoelectrical Property of AgNW TCFs
3.5. Effect of AgNWs on the Optoelectrical Property of AgNW TCFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, R.R.; Yang, M.; Choi, S.-I.; Chi, M.; Luo, M.; Zhang, C.; Li, Z.-Y.; Camargo, P.H.C.; Ribeiro, S.J.L.; Xia, Y. Facile Synthesis of Sub-20 Nm Silver Nanowires Through a Bromide-Mediated Polyol Method. ACS Nano 2016, 10, 7892–7900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, J.; Xu, D.; Sun, Y.; Yan, F. One-Pot Synthesis and Purification of Ultralong Silver Nanowires for Flexible Transparent Conductive Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 25465–25473. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Cui, F.; Kuttner, E.; Xie, C.; Chen, H.; Sun, Y.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze. Nano Lett. 2018, 18, 5329–5334. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, H.; Liang, J.; Chen, Y. Dynamic Agitation-Induced Centrifugal Purification of Nanowires Enabling Transparent Electrodes with 99.2% Transmittance. Adv. Funct. Mater. 2018, 28, 1804479. [Google Scholar] [CrossRef]
- Qian, F.; Lan, P.C.; Freyman, M.C.; Chen, W.; Kou, T.; Olson, T.Y.; Zhu, C.; Worsley, M.A.; Duoss, E.B.; Spadaccini, C.M.; et al. Ultralight Conductive Silver Nanowire Aerogels. Nano Lett. 2017, 17, 7171–7176. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent Electrodes for Organic Optoelectronic Devices: A Review. J. Photon. Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.; Bellet, D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. Small 2016, 12, 6052–6075. [Google Scholar] [CrossRef]
- You, Y.Z.; Kim, Y.S.; Choi, D.H.; Jang, H.S.; Lee, J.H.; Kim, D. Electrical and Optical Study of ITO Films on Glass and Polymer Substrates Prepared by DC Magnetron Sputtering Type Negative Metal Ion Beam Deposition. Mater. Chem. Phys. 2008, 107, 444–448. [Google Scholar] [CrossRef]
- Choi, W.-J.; Kwak, D.-J.; Park, C.-S.; Sung, Y.-M. Characterization of Transparent Conductive ITO, ITiO, and FTO Films for Application in Photoelectrochemical Cells. J. Nanosci. Nanotechnol. 2012, 12, 3394–3397. [Google Scholar] [CrossRef]
- Mei-Zhen, G.; Job, R.; De-Sheng, X.; Fahrner, W.R. Thickness Dependence of Resistivity and Optical Reflectance of ITO Films. Chinese Phys. Lett. 2008, 25, 1380–1383. [Google Scholar] [CrossRef]
- Wang, K.; Jiao, P.; Cheng, Y.; Xu, H.; Zhu, G.; Zhao, Y.; Jiang, K.; Zhang, X.; Su, Y. ITO Films with Different Preferred Orientations Prepared by DC Magnetron Sputtering. Opt. Mater. 2022, 134, 113040. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Nanjo, H.; Hassan, F.M.B.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T. Properties of Indium Tin Oxide Thin Films Deposited on Glass and Clay Substrates by Ion-Beam Sputter Deposition Method. Jpn. J. Appl. Phys. 2011, 50, 01AK03. [Google Scholar] [CrossRef]
- Feng, Y.; Song, J.; Han, G.; Zhou, B.; Liu, C.; Shen, C. Transparent and Stretchable Electromagnetic Interference Shielding Film with Fence-like Aligned Silver Nanowire Conductive Network. Small Methods 2023, 7, 2201490. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Yang, Z.; Zhang, T.; Yu, J.; Xu, G.; Chen, A.; He, Q.; Pan, J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS Appl. Mater. Interfaces 2023, 15, 41906–41915. [Google Scholar] [CrossRef]
- Cui, Z.; Han, Y.; Huang, Q.; Dong, J.; Zhu, Y. Electrohydrodynamic Printing of Silver Nanowires for Flexible and Stretchable Electronics. Nanoscale 2018, 10, 6806–6811. [Google Scholar] [CrossRef]
- Kumar, A.; Yerva, S.V.; Barshilia, H.C. Broadband and Wide Angle Anti-Reflective Nanoporous Surface on Poly (Ethylene Terephthalate) Substrate Using a Single Step Plasma Etching for Applications in Flexible Electronics. Sol. Energy Mater. Sol. Cells 2016, 155, 184–193. [Google Scholar] [CrossRef]
- Jiang, Y.; Xi, J.; Wu, Z.; Dong, H.; Zhao, Z.; Jiao, B.; Hou, X. Highly Transparent, Conductive, Flexible Resin Films Embedded with Silver Nanowires. Langmuir 2015, 31, 4950–4957. [Google Scholar] [CrossRef]
- Lu, H.; Luo, J.; Liu, Y.; Zhong, Y.; Wang, J.; Zhang, Y. Highly Performance Flexible Polymer Solar Cells by Flipping the Bilayer Film of Ag Nanowires and Polyvinyl Alcohol on Polyethylene Terephthalate as Transparent Conductive Electrodes. IEEE J. Photovolt. 2019, 9, 710–714. [Google Scholar] [CrossRef]
- Akter, T.; Kim, W.S. Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl. Mater. Interfaces 2012, 4, 1855–1859. [Google Scholar] [CrossRef]
- Wan, F.; He, H.; Zeng, S.; Du, J.; Wang, Z.; Gu, H.; Xiong, J. Silver Nanowire Network for Flexible Transparent Electrodes Based on Spray Coating at a Low DC Electric Field and Plasma Treatment. Nanotechnology 2020, 31, 325302. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Wang, J.; Yang, Q.; Zhang, B.; Xie, Z. Low-Temperature All-Solution-Processed Transparent Silver Nanowire-Polymer/AZO Nanoparticles Composite Electrodes for Efficient ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 34630–34637. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Wu, J.; Fu, Y.; Tang, H.; Yi, X.; Xie, Z. MEA Surface Passivation of a AgNWs:SnO2 Composite Transparent Electrode Enables Efficient Flexible ITO-Free Polymer Solar Cells. J. Mater. Chem. C 2021, 9, 9914–9921. [Google Scholar] [CrossRef]
- Wang, Y.; Du, D.; Yang, X.; Zhang, X.; Zhao, Y. Optoelectronic and Electrothermal Properties of Transparent Conductive Silver Nanowires Films. Nanomaterials 2019, 9, 904. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Du, D.; Zhao, Y.; Zhang, X. New Insights into Flexible Transparent Conductive Silver Nanowires Films. Int. J. Mol. Sci. 2019, 20, 2803. [Google Scholar] [CrossRef]
- Jung, E.; Kim, C.; Kim, M.; Chae, H.; Cho, J.H.; Cho, S.M. Roll-to-Roll Preparation of Silver-Nanowire Transparent Electrode and Its Application to Large-Area Organic Light-Emitting Diodes. Org. Electron. 2017, 41, 190–197. [Google Scholar] [CrossRef]
- Liang, J.; Tong, K.; Pei, Q. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Adv. Mater. 2016, 28, 5986–5996. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Shan, J.; Liu, C.; Guo, X.; Zhao, X.; Yang, H. Facile Fabrication of Large-Scale Silver Nanowire Transparent Conductive Films by Screen Printing. Mater. Res. Express 2022, 9, 066401. [Google Scholar] [CrossRef]
- Shukla, D.; Liu, Y.; Zhu, Y. Eco-Friendly Screen Printing of Silver Nanowires for Flexible and Stretchable Electronics. Nanoscale 2023, 15, 2767–2778. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Lee, E.-S.; Lim, D.-S.; Kang, H.W.; Oh, Y.-J. Roll-to-Roll Slot Die Production of 300 Mm Large Area Silver Nanowire Mesh Films for Flexible Transparent Electrodes. RSC Adv. 2017, 7, 7540–7546. [Google Scholar] [CrossRef]
- Kim, D.-J.; Shin, H.-I.; Ko, E.-H.; Kim, K.-H.; Kim, T.-W.; Kim, H.-K. Roll-to-Roll Slot-Die Coating of 400 Mm Wide, Flexible, Transparent Ag Nanowire Films for Flexible Touch Screen Panels. Sci. Rep. 2016, 6, 34322. [Google Scholar] [CrossRef]
- Yang, J.; Chang, L.; Zhao, H.; Zhang, X.; Cao, Z.; Jiang, L. Multilayer Ordered Silver Nanowire Network Films by self-driven Climbing for large-area Flexible Optoelectronic Devices. InfoMat 2024, 6, e12529. [Google Scholar] [CrossRef]
- The Cost of Huakechuangzhi Conductive Film is Less Than 50 Yuan, Heralding the Full Advent of the Nano Silver Wire Era. Available online: https://www.sohu.com/a/483637771_219099 (accessed on 16 December 2024).
- Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S.L.; Ko, H. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. ACS Nano 2017, 11, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, S.; Lee, J.; Won, P.; Ko, S.; Lee, D. Fabrication of Transparent Conductive Film with Flexible Silver Nanowires Using Roll-to-Roll Slot-Die Coating and Calendering and Its Application to Resistive Touch Panel. Adv. Elect. Mater. 2018, 4, 1800243. [Google Scholar] [CrossRef]
- Xie, M.; Lu, H.; Zhang, L.; Wang, J.; Luo, Q.; Lin, J.; Ba, L.; Liu, H.; Shen, W.; Shi, L.; et al. Fully Solution-Processed Semi-Transparent Perovskite Solar Cells with Ink-Jet Printed Silver Nanowires Top Electrode. Solar RRL 2018, 2, 1700184. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Chen, T.-J.; Hsiao, L.-J.; Kang, Y.L.; Xu, W.-F.; Tu, W.-C.; Wei, P.-K.; Chu, C.-W. Flexible Indium Tin Oxide-Free Polymer Solar Cells with Silver Nanowire Electrodes. J. Nanoelectron. Optoelectron. 2017, 12, 839–843. [Google Scholar] [CrossRef]
- Liang, G.; Hu, H.; Liao, L.; He, Y.; Ye, C. Highly Flexible and Bright Electroluminescent Devices Based on Ag Nanowire Electrodes and Top-Emission Structure. Adv. Elect. Mater. 2017, 3, 1600535. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, B. Ag Nanowire Electrode with Patterned Dry Film Photoresist Insulator for Flexible Organic Light-Emitting Diode with Various Designs. Mater. Des. 2018, 160, 572–577. [Google Scholar] [CrossRef]
- Hosseinzadeh Khaligh, H.; Liew, K.; Han, Y.; Abukhdeir, N.M.; Goldthorpe, I.A. Silver Nanowire Transparent Electrodes for Liquid Crystal-Based Smart Windows. Sol. Energy Mater. Sol. Cells 2015, 132, 337–341. [Google Scholar] [CrossRef]
- Kim, D.-J.; Hwang, D.Y.; Park, J.-Y.; Kim, H.-K. Liquid Crystal–Based Flexible Smart Windows on Roll-to-Roll Slot Die–Coated Ag Nanowire Network Films. J. Alloys Compd. 2018, 765, 1090–1098. [Google Scholar] [CrossRef]
- Lan, W.; Chen, Y.; Yang, Z.; Han, W.; Zhou, J.; Zhang, Y.; Wang, J.; Tang, G.; Wei, Y.; Dou, W.; et al. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads. ACS Appl. Mater. Interfaces 2017, 9, 6644–6651. [Google Scholar] [CrossRef]
- Goak, J.C.; Kim, T.Y.; Kim, D.U.; Chang, K.S.; Lee, C.S.; Lee, N. Stable Heating Performance of Carbon Nanotube/Silver Nanowire Transparent Heaters. Appl. Surf. Sci. 2020, 510, 145445. [Google Scholar] [CrossRef]
- Kim, B.S.; Won, S.; Seo, J.; Jeong, S.K.; Kim, C.; Kim, K.-S.; Kim, S.H.; Cho, S.M.; Kim, J.-H. Embedded Reverse-Offset Printing of Silver Nanowires and Its Application to Double-Stacked Transparent Electrodes with Microscale Patterns. ACS Appl. Mater. Interfaces 2021, 13, 26601–26609. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Xie, M.; Zhang, L.; Yan, L.; Wei, J.; Ji, G.; Luo, Q.; Lin, J.; Hao, Y.; Ma, C.-Q. Fully Solution Processed Semi-Transparent Perovskite Solar Cells with Spray-Coated Silver Nanowires/ZnO Composite Top Electrode. Sol. Energy Mater. Sol. Cells 2018, 185, 399–405. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.P.; Kim, W.H.; Song, Y.H.; Kim, S.; Jeong, H.-J. Large-Scale Transfer of Ag Nanowires from PET to PC Film Using a Roll-to-Roll UV Lamination Process for a Capacitive Touch Sensor. RSC Adv. 2023, 13, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, Y.; Jin, R.; Guan, Y.; Ni, H.; Wan, Q.; Li, L. A Systematic and Effective Research Procedure for Silver Nanowire Ink. J. Alloys Compd. 2017, 706, 164–175. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Shan, J.; Li, Z.; Guo, X.; Zhao, X.; Yang, H. Large-Scale Preparation of Silver Nanowire-Based Flexible Transparent Film Heaters by Slot-Die Coating. Materials 2022, 15, 2634. [Google Scholar] [CrossRef]
- Yang, P. Wires on water. Nature 2003, 425, 243–244. [Google Scholar] [CrossRef]
Sample | Coating Height, h (μm) | Type of CMC | VCMC 1 (mL) | VPVA 2 (mL) | Diameter of AgNW (nm) | VAgNW 3 (mL) |
---|---|---|---|---|---|---|
A1 | 300 | V | 10 | 2 | 20 | 2.5 |
A2 | 350 | V | 10 | 2 | 20 | 2.5 |
A3 | 400 | V | 10 | 2 | 20 | 2.5 |
A4 | 450 | V | 10 | 2 | 20 | 2.5 |
A5 | 500 | V | 10 | 2 | 20 | 2.5 |
A6 | 550 | V | 10 | 2 | 20 | 2.5 |
A7 | 600 | V | 10 | 2 | 20 | 2.5 |
B1 | 400 | I | 10 | 2 | 20 | 2.5 |
B2 | 400 | II | 10 | 2 | 20 | 2.5 |
B3 | 400 | III | 10 | 2 | 20 | 2.5 |
B4 | 400 | IV | 10 | 2 | 20 | 2.5 |
B5 | 400 | V | 10 | 2 | 20 | 2.5 |
C1 | 400 | V | 10 | 3 | 20 | 2.5 |
C2 | 400 | V | 10 | 2 | 20 | 2.5 |
C3 | 400 | V | 10 | 1 | 20 | 2.5 |
C4 | 400 | V | 10 | 0 | 20 | 2.5 |
D1 | 400 | V | 10 | 1 | 20 | 3.0 |
D2 | 400 | V | 10 | 1 | 20 | 2.5 |
D3 | 400 | V | 10 | 1 | 20 | 2.0 |
D4 | 400 | V | 10 | 1 | 20 | 1.5 |
D5 | 400 | V | 10 | 1 | 20 | 1.0 |
E1 | 400 | V | 10 | 1 | 30 | 3.0 |
E2 | 400 | V | 10 | 1 | 30 | 2.5 |
E3 | 400 | V | 10 | 1 | 30 | 2.0 |
E4 | 400 | V | 10 | 1 | 30 | 1.5 |
E5 | 400 | V | 10 | 1 | 30 | 1.0 |
F1 | 400 | V | 10 | 1 | 45 | 3.0 |
F2 | 400 | V | 10 | 1 | 45 | 2.5 |
F3 | 400 | V | 10 | 1 | 45 | 2.0 |
F4 | 400 | V | 10 | 1 | 45 | 1.5 |
F5 | 400 | V | 10 | 1 | 45 | 1.0 |
G1 | 400 | V | 10 | 1 | 45 | 0.5 |
30 | 1.0 | |||||
G2 | 400 | V | 10 | 1 | 45 | 0.75 |
30 | 0.75 | |||||
G3 | 400 | V | 10 | 1 | 45 | 1.0 |
30 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, J.; Hong, Y.; Wang, H.; Cui, K.; Ding, J.; Guo, X. Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating. Coatings 2025, 15, 95. https://doi.org/10.3390/coatings15010095
Shan J, Hong Y, Wang H, Cui K, Ding J, Guo X. Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating. Coatings. 2025; 15(1):95. https://doi.org/10.3390/coatings15010095
Chicago/Turabian StyleShan, Jiaqi, Ye Hong, Haoyu Wang, Kaixuan Cui, Jianbao Ding, and Xingzhong Guo. 2025. "Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating" Coatings 15, no. 1: 95. https://doi.org/10.3390/coatings15010095
APA StyleShan, J., Hong, Y., Wang, H., Cui, K., Ding, J., & Guo, X. (2025). Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating. Coatings, 15(1), 95. https://doi.org/10.3390/coatings15010095