Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Film Activation and Testing
2.3. Testing of Activated Films in Food Systems
2.4. Statistical Analysis
3. Results
3.1. Antimicrobial Activity of Activated Films
3.2. Effect of Activated Films on Model Food Systems
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perez-Perez, C.; Regalado-Gonzalez, C.; Rodriguez-Rodriguez, C.A.; Barbosa-Rodriguez, J.R.; Villasenor-Ortega, F. Incorporation of antimicrobial agents in food packaging films and coatings. In Advances in Agricultural and Food Biotechnology; Guevara-González, R.G., Torres-Pacheco, L., Eds.; Research Signpost: Trivandrum, India, 2006; pp. 193–216. [Google Scholar]
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- De Azeredo, H.M.C. Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 2013, 30, 56–69. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Rollini, M.; Nielsen, T.; Musatti, A.; Limbo, S.; Piergiovanni, L.; Hernandez Munoz, P.; Gavara, R. Antimicrobial Performance of Two Different Packaging Materials on the Microbiological Quality of Fresh Salmon. Coatings 2016, 6, 6. [Google Scholar] [CrossRef]
- Charoenprasert, S.; Mitchell, A. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef] [PubMed]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1996, 34, 823–826. [Google Scholar] [CrossRef]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–525. [Google Scholar]
- Emamifar, A.; Kadivar, M.; Shahedi, M.; Solimanian-Zad, S. Effect of nanocomposite packaging containing Ag and ZnO on reducing pasteurization temperature of orange juice. J. Food Process. Preserv. 2012, 36, 104–112. [Google Scholar] [CrossRef]
- Droval, G.; Aranberri, I.; Bilbao, A.; German, L.; Verelst, M.; Dexpert-Ghys, J. Antimicrobial activity of nanocomposites: Poly(amide) 6 and low density poly(ethylene) filled with zinc oxide. E-Polymers 2008, 128, 1–13. [Google Scholar] [CrossRef]
- Silvestre, C.; Duraccio, D.; Marra, A.; Strongone, V.; Cimmino, S. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging. Coatings 2016, 6, 4. [Google Scholar] [CrossRef]
- Rørvik, L.M. Listeria monocytogenes in the smoked salmon industry. Int. J. Food Microbiol. 2000, 62, 183–190. [Google Scholar] [CrossRef]
- Hwang, C.A. Effect of salt, smoke compound, and storage temperature on the growth of Listeria monocytogenes in simulated smoked salmon. J. Food Prot. 2007, 70, 2321–2328. [Google Scholar] [PubMed]
- European Food Safety Authority. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010–2011 Part A: Listeria monocytogenes prevalence estimates. EFSA J. 2013, 11, 3241. [Google Scholar]
- Friesema, I.; de Jong, A.; Hofhuis, A.; Heck, M.; van den Kerkhof, H.; de Jonge, R.; Hameryck, D.; Nagel, K.; van Vilsteren, G.; van Beek, P.; et al. Large outbreak of Salmonella Thompson elated to smoked salmon in The Netherlands, August to December 2012. Euro Surveill. 2014, 19, 1–8. [Google Scholar] [CrossRef]
- Friesema, I.H.; de Jong, A.E.; Fitz James, I.A.; Heck, M.E.; van den Kerkhof, J.H.; Notermans, D.W.; van Pelt, W.; Hofhuis, A. Outbreak of Salmonella Thompson in the Netherlands since July 2012. Euro Surveill. 2012, 17, 1–14. [Google Scholar]
- Churchill, O.J.; Fernandez-Piquer, J.; Powell, S.M.; Tamplin, M.L. Microbial and sensorial models for head-on and gutted (HOG) Atlantic Salmon (Salmo salar) stored from 0 to 15 °C. Food Microbiol. 2016, 57, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Macé, S.; Cornet, J.; Chevalier, F.; Cardinal, M.; Pilet, M.F.; Dousset, X.; Joffraud, J.J. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR-TTGE. Food Microbiol. 2012, 30, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Milne, D.; Powell, S.M. Limited microbial growth in Atlantic salmon packed in a modified atmosphere. Food Cont. 2014, 42, 29–33. [Google Scholar] [CrossRef]
Films | Target Bacteria | ||||
---|---|---|---|---|---|
Salmonella Enterica CECT 915 | Escherichia Coli CECT 4783 | Pseudomonas Fluorescens CECT 378 | Listeria Innocua CECT 4030 | Staphylococcus Aureus CECT 976 | |
ZnO (5.0%) | +/− | +/− | +/− | +/− | + |
ZnAc (0.5%) | +/− | +/− | +/− | +/− | + |
PS (0.25%) | +/− | + | +/− | − | +/− |
TY (0.5%) | +/− | − | − | − | + |
TY (0.5%) + L (0.1%) | +/− | − | − | − | + |
TY (0.5%) + L (0.5%) | +/− | +/− | + | − | + |
TY (1.5%) + L (0.1%) | ++ | + | + | − | + |
TY (1.5%) + L (0.5%) | ++ | ++ | ++ | +/− | + |
TY (0.5%) + PHB (0.1%) | ++ | ++ | ++ | ++ | ++ |
TY (0.5%) + PHB (0.5%) | ++ | ++ | ++ | ++ | ++ |
TY (1.5%) + PHB (0.1%) | ++ | ++ | ++ | ++ | ++ |
TY (1.5%) + PHB (0.5%) | ++ | ++ | ++ | ++ | ++ |
Indicator Strain | Storage Time (Days) | |||
---|---|---|---|---|
Listeria innocua | 0 | 1 | 4 | 7 |
Raw seabream | ||||
Control | 5.49 ± 0.17 | 4.47 ± 0.23 | 4.93 ± 0.34 | 6.03 ± 17 |
Zinc oxide (5%) | 5.47 ± 0.17 | 4.60 ± 0.15 | 4.27 ± 25 | 5.67 ± 22 |
Treatment Conditions | Storage Time (Days) | ||
---|---|---|---|
0 | 3 | 7 | |
Salmonella enterica | |||
Smoked salmon | |||
Control | 3.84 ± 0.24 | 2.47 ± 0.14 | 2.69 ± 0.34 |
Tyrosol (2.5%) | 3.84 ± 0.38 | 1.84 ± 0.19 | 2.27 ± 0.31 |
Tyrosol (1.5%) + PHB (0.5%) | 3.84 ± 0.24 | 1.69 ± 0.27 | <1.00 |
Smoked tuna | |||
Control | 3.66 ± 0.14 | 3.17 ± 0.24 | 3.00 ± 0.18 |
Tyrosol (2.5%) | 3.66 ± 0.14 | 3.00 ± 0.21 | 2.95 ± 0.40 |
Tyrosol (1.5%) + PHB (0.5%) | 3.66 ± 0.14 | 1.84 ± 0.28 * | 1.77 ± 0.42 * |
Listeria monocytogenes | |||
Smoked salmon | |||
Control | 3.14 ± 0.19 | 3.20 ± 0.18 | 4.0 ± 0.21 |
Tyrosol (2.5%) | 3.14 ± 0.19 | 2.54 ± 0.28 | 2.42 ± 0.31 * |
Tyrosol (1.5%) + PHB (0.5%) | 3.14 ± 0.19 | 2.44 ± 0.42 | <1.00 |
Smoked tuna | |||
Control | 3.17 ± 0.13 | 2.47 ± 0.24 | 2.69 ± 0.37 |
Tyrosol (2.5%) | 3.17 ± 0.13 | 1.60 ± 0.14 | 1.47 ± 0.16 * |
Tyrosol (1.5%) + PHB (0.5%) | 3.17 ± 0.13 | 1.47 ± 0.17 * | 1.00 ± 0.12 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano Cuadrado, B.; Martínez Viedma, P.; López Aguayo, M.C.; Ortega Blazquez, I.; Grande Burgos, M.J.; Pérez Pulido, R.; Gálvez, A.; Lucas López, R. Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens. Coatings 2016, 6, 28. https://doi.org/10.3390/coatings6030028
Soriano Cuadrado B, Martínez Viedma P, López Aguayo MC, Ortega Blazquez I, Grande Burgos MJ, Pérez Pulido R, Gálvez A, Lucas López R. Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens. Coatings. 2016; 6(3):28. https://doi.org/10.3390/coatings6030028
Chicago/Turabian StyleSoriano Cuadrado, Belén, Pilar Martínez Viedma, Mari Carmen López Aguayo, Irene Ortega Blazquez, Maria José Grande Burgos, Rubén Pérez Pulido, Antonio Gálvez, and Rosario Lucas López. 2016. "Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens" Coatings 6, no. 3: 28. https://doi.org/10.3390/coatings6030028
APA StyleSoriano Cuadrado, B., Martínez Viedma, P., López Aguayo, M. C., Ortega Blazquez, I., Grande Burgos, M. J., Pérez Pulido, R., Gálvez, A., & Lucas López, R. (2016). Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens. Coatings, 6(3), 28. https://doi.org/10.3390/coatings6030028