A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oscillator Description
2.2. Deposition Conditions
2.3. Analytical Techniques
2.4. Evaluation of Photocatalytic Activity
3. Results and Discussion
3.1. Samples Overview and Composition
3.2. XRD
3.3. Band Gap Calculation
3.4. TEM Results
3.5. Photocatalytic Activity Measurement
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ratova, M.; Kelly, P.J.; West, G.T.; Iordanova, I. Enhanced properties of magnetron sputtered photocatalytic coatings via transition metal doping. Surf. Coat. Tech. 2013, 228, S544–S549. [Google Scholar] [CrossRef]
- Ratova, M.; West, G.; Kelly, P. Optimization studies of photocatalytic tungsten-doped titania coatings deposited by reactive magnetron co-sputtering. Coatings 2013, 3, 194–207. [Google Scholar] [CrossRef]
- Rehman, S.; Ullah, R.; Butt, A.M.; Gohar, N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009, 170, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, Q.; Meng, T.; Ren, T.; Chen, D. Preparation and characterization of CdS/TiO2-Mt composites with enhanced visible light photocatalytic activity. Energy Environ. Focus 2015, 4, 149–156. [Google Scholar]
- Yamin, Y.; Keller, N.; Keller, V. WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation. J. Photoch. Photobiol. A 2012, 245, 43–57. [Google Scholar] [CrossRef]
- Zhang, J.F.; Wang, Y.; Yu, C.P.; Shu, X.; Jiang, L.; Cui, J.W.; Chen, Z.; Xie, T.; Wu, Y.C. Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays. New J. Chem. 2014, 38, 4975–4984. [Google Scholar] [CrossRef]
- Saison, T.; Gras, P.; Chemin, N.; Chanéac, C.; Durupthy, O.; Brezová, V.; Colbeau-Justin, C.; Jolivet, J.-P. New insights into Bi2WO6 properties as a visible-light photocatalyst. J. Phys. Chem. C 2013, 117, 22656–22666. [Google Scholar] [CrossRef]
- Zhang, L.-W.; Wang, Y.-J.; Cheng, H.-Y.; Yao, W.-Q.; Zhu, Y.-F. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv. Mater. 2008, 21, 1286–1290. [Google Scholar] [CrossRef]
- Deng, F.; Liu, Y.; Luo, X.; Chen, D.; Wu, S.; Luo, S. Enhanced photocatalytic activity of Bi2WO6/TiO2 nanotube array composite under visible light irradiation. Sep. Purif. Technol. 2013, 120, 156–161. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lu, Q.; Xu, F.; Sun, H.; Yu, J. Synthesis of TiO2/Bi2WO6 nanofibers with electrospinning technique for photocatalytic methyl blue degradation. J. Sol-Gel Sci. Technol. 2013, 66, 406–412. [Google Scholar] [CrossRef]
- Murcia-López, S.; Hidalgo, M.C.; Navío, J.A. Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for rhodamine b degradation under sunlike and visible illumination. Appl. Catal. A 2012, 423–424, 34–41. [Google Scholar] [CrossRef]
- Murcia-López, S.; Hidalgo, M.C.; Navío, J.A. Degradation of rhodamine b/phenol mixtures in water by sun-like excitation of a Bi2WO6–TiO2 photocatalyst. Photochem. Photobiol. 2013, 89, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.; Sun, S.; Wang, L. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: A case study on Bi2WO6/TiO2. Appl. Catal. B 2012, 111–112, 126–132. [Google Scholar] [CrossRef]
- Hou, Y.-F.; Liu, S.-J.; Zhang, J.-H.; Cheng, X.; Wang, Y. Facile hydrothermal synthesis of TiO2-Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties. Dalton Trans. 2014, 43, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fei, L.; Jiang, X.; Pan, C.; Wang, Y. Engineering nanostructured Bi2WO6–TiO2 toward effective utilization of natural light in photocatalysis. J. Am. Ceram. Soc. 2011, 94, 4157–4161. [Google Scholar] [CrossRef]
- Xu, Q.C.; Wellia, D.V.; Ng, Y.H.; Amal, R.; Tan, T.T.Y. Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 2011, 115, 7419–7428. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Bates, R.I.; Arnell, R.D. Alloy coatings by dual magnetron sputter barrel plating. Surf. Coat. Technol. 1994, 68, 686–690. [Google Scholar] [CrossRef]
- Abe, T.; Akamaru, S.; Watanabe, K.; Honda, Y. Surface modification of polymer microparticles using a hexagonal-barrel sputtering system. J. Alloys Compd. 2005, 402, 227–232. [Google Scholar] [CrossRef]
- Taguchi, A.; Inoue, M.; Hiromi, C.; Tanizawa, M.; Kitami, T.; Abe, T. Study of the surface morphology of platinum thin films on powdery substrates prepared by the barrel sputtering system. Vacuum 2008, 83, 575–578. [Google Scholar] [CrossRef]
- Poelman, H.; Eufinger, K.; Depla, D.; Poelman, D.; De Gryse, R.; Sels, B.F.; Marin, G.B. Magnetron sputter deposition for catalyst synthesis. Appl. Catal., A 2007, 325, 213–219. [Google Scholar] [CrossRef]
- Schmid, G.; Eisenmenger-Sittner, C.; Hell, J.; Horkel, M.; Keding, M.; Mahr, H. Optimization of a container design for depositing uniform metal coatings on glass microspheres by magnetron sputtering. Surf. Coat. Technol. 2010, 205, 1929–1936. [Google Scholar] [CrossRef]
- Schmid, G.H.S.; Eisenmenger-Sittner, C. A method for uniformly coating powdery substrates by magnetron sputtering. Surf. Coat. Technol. 2013, 236, 353–360. [Google Scholar] [CrossRef]
- Yu, X.; Shen, Z.; Xu, Z.; Wang, S. Fabrication and structural characterization of metal films coated on cenosphere particles by magnetron sputtering deposition. Appl. Surf. Sci. 2007, 253, 7082–7088. [Google Scholar] [CrossRef]
- Ratova, M.; West, G.T.; Kelly, P.J. Photocatalytic visible-light active bismuth tungstate coatings deposited by reactive magnetron sputtering. Vacuum 2015, 115, 66–69. [Google Scholar] [CrossRef]
- Ratova, M.; Kelly, P.; West, G.; Xia, X.; Gao, Y. Deposition of visible light active photocatalytic bismuth molybdate thin films by reactive magnetron sputtering. Materials 2016, 9, 67. [Google Scholar] [CrossRef]
- Tušar, N.N.; Kaučič, V.; Logar, N.Z. Chapter 15 Functionalized Porous Silicates as Catalysts for Water and Air Purification. In New and Future Developments in Catalysis; Suib, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 365–383. [Google Scholar]
Sample ID | Power on Bi Target, W | Power to W Target, W | at.%Ti/at.%Bi/at.%W Ratio | Bi/W Ratio | Crystallite Size, nm | BET Surface Area, m2/g | Band Gap, eV | Visible Light Acetone Degradation Constant, min−1m−2 |
---|---|---|---|---|---|---|---|---|
TiO2 | – | – | 100/0/0 | – | 7.2 | 345 | 3.20 | 1.08 × 10−5 |
BWO1 | 200 | 400 | 89/9/2 | 4.5/1 | 8.1 | 314 | 3.04 | 2.81 × 10−5 |
BWO2 | 150 | 450 | 88/8/4 | 2/1 | 8.7 | 309 | 2.99 | 5.56 × 10−5 |
BWO3 | 120 | 480 | 90/5/5 | 1/1 | 10.2 | 263 | 2.97 | 4.52 × 10−5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratova, M.; Kelly, P.J.; West, G.T.; Tosheva, L. A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings 2016, 6, 29. https://doi.org/10.3390/coatings6030029
Ratova M, Kelly PJ, West GT, Tosheva L. A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings. 2016; 6(3):29. https://doi.org/10.3390/coatings6030029
Chicago/Turabian StyleRatova, Marina, Peter J. Kelly, Glen T. West, and Lubomira Tosheva. 2016. "A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity" Coatings 6, no. 3: 29. https://doi.org/10.3390/coatings6030029
APA StyleRatova, M., Kelly, P. J., West, G. T., & Tosheva, L. (2016). A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings, 6(3), 29. https://doi.org/10.3390/coatings6030029