Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.1.1. Catalyst Materials Preparation
2.1.2. CVD Process
2.2. Bubble Transfer
2.3. Analysis
3. Results and Discussion
3.1. Bubble Transfer Method for Transferring Graphene
3.2. Effect of Cr Adhesive Layer
3.3. Influence of Temperature
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Geim, A.K.; Novoselov, N.M.R. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Dong, X.; Shi, Y.; Li, C.M.; Li, L.J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.; Yoon, J.; Hahm, M.G.; Kim, D.H.; Kim, A.R.; Kahng, Y.H.; Park, S.W.; Lee, Y.J.; Park, S.G.; Kwon, J.D.; et al. Graphene-based gas sensor: Metal decoration effect and application to a flexible device. J. Mater. Chem. C 2014, 2, 5280–5285. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Sperling, B.A.; Calizo, I.; Cheng, G.; Hacker, C.A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of Cu catalyst. ACS Nano 2011, 5, 9927–9933. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.; Zhang, Z.; Fu, Q.; Peng, L.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699. [Google Scholar] [CrossRef] [PubMed]
- Cherian, C.T.; Giustiniano, F.; Martin-Fernandez, I.; Andersen, H.; Balakrishnan, J.; Ozyilmaz, B. ‘Bubble-free’ electrochemical delamination of CVD graphene films. Small 2015, 11, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Zhan, Z.; Guo, W.; Xu, C.; Deng, J.; Chakarov, D.; Hyldgaard, P.; Schroder, E.; Yurgens, A.; et al. A mechanism for highly efficient electrochemical bubbling delamination of CVD-grown from metal substrates. Adv. Mater. Interfaces 2016, 3, 1500492. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on Cu foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Colombo, L.; Ruoff, R. Synthesis of graphene films on Cu foils by chemical vapor deposition. Adv. Mater. 2016, 28, 6247–6252. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Gledhill, A.; Chen, C.; Drexler, J.; Padture, N. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. 2011, 98, 113117. [Google Scholar] [CrossRef]
- Baoshan, H.; Hiroki, A.; Yoshito, I.; Kenji, K.; Masaharu, T.; Eisuke, M.; Kazushi, S.; Noriaki, M.; Ken-ichi, I.; Seigi, M. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 2012, 50, 57–65. [Google Scholar] [CrossRef]
- Chan, C.; Chang, C.; Farrell, C.; Schrott, A. Adhesion studies of Cu-Cr alloys on Al2O3. Appl. Phys. Lett. 1993, 62, 654–656. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colomba, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tao, L.; Hao, Y.; Liu, Z.; Chou, H.; Kholmanov, I.; Chen, S.; Tan, C.; Jayant, N.; Yu, Q.; et al. Direct delamination of graphene for high-performance plastic electronics. Small 2014, 10, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.M.; van den Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Schabel, M.C.; Martins, J.L. Energetics of interplanar binding in graphite. Phys. Rev. B 1992, 46, 7185–7188. [Google Scholar] [CrossRef]
- Taleb, A.A.; Yu, H.K.; Anemone, G.; Farias, D.; Wodtke, A.M. Helium diffraction and acoustic phonons of graphene grown on copper foil. Carbon 2015, 95, 731–737. [Google Scholar] [CrossRef]
- Zhan, Z.; Sun, J.; Liu, L.; Wang, E.; Cao, Y.; Lindvall, N.; Skoblin, G.; Yurgens, A. Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. J. Mater. Chem. C 2015, 3, 8634–8641. [Google Scholar] [CrossRef]
- De La Rosa, C.J.L.; Sun, J.; Lindvall, N.; Cole, M.T.; Nam, Y.; Löffler, M.; Olsson, E.; Teo, K.B.K.; Yurgens, A. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Appl. Phys. Lett. 2013, 102, 2011–2015. [Google Scholar] [CrossRef]
- Lupina, G.; Kitzmann, J.; Costina, I.; Lukosius, M.; Wenger, C.; Wolff, A.; Vaziri, S.; Östling, M.; Pasternak, I.; Krajewska, A.; et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 2015, 9, 4776–4785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.L.; Smith, J.R.; Raynolds, J.; Srolovitz, D.J. First-principles study of the α-Al2O3(0001)/Cu(111) interface. Interface Sci. 1996, 3, 289–302. [Google Scholar] [CrossRef]
- Hall, M.G.; Aaronson, H.I.; Kinsma, K.R. The structure of nearly coherent fcc: Bcc boundaries in a CuCr alloy. Surf. Sci. 1972, 31, 257–274. [Google Scholar] [CrossRef]
- Son, J.H.; Yu, H.K.; Song, Y.H.; Kim, B.J.; Lee, J.-L. Design of epitaxially strained Ag film for durable Ag-based contact to p-type GaN. Cryst. Growth Des. 2011, 11, 4943–4949. [Google Scholar] [CrossRef]
- Russeel, S.W.; Rafalski, S.A.; Spreitzer, R.L.; Li, J.; Moinpour, M.; Moghadam, F.; Alford, T.L. Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions. Thin Solid Film 1995, 262, 154–167. [Google Scholar] [CrossRef]
- Fu, G.Y.; Niu, Y.; Gesmundo, F. Microstructural effects on the high temperature oxidation of two-phase Cu-Cr alloys in 1atm O2. Corros. Sci. 2003, 45, 559–574. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Theiss, S.D.; Kahn, A.; Wagner, S. Self-passivated copper gates for amorphous silicon thin-film transistors. IEEE Electron Device Lett. 1997, 18, 388–390. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Liu, G.; Wu, L.; Geng, X.; Long, M.; Cao, X.; Guo, Y.; Li, W.; Sun, M.; et al. Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv. Funct. Mater. 2012, 22, 3153–3159. [Google Scholar] [CrossRef]
- Weatherup, R.S.; Bayer, B.C.; Blume, R.; Ducati, C.; Baehtz, C.; Schlogl, R.; Hofmann, S. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 2011, 11, 4154–4160. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011, 13, 20836. [Google Scholar] [CrossRef] [PubMed]
No. of Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Mass of Cu (g) | 0.0235 | 0.0220 | 0.0210 | 0.0198 | 0.0191 | 0.0181 | 0.0171 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, S.; Yu, H.K. Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire. Coatings 2017, 7, 218. https://doi.org/10.3390/coatings7120218
Lee J, Lee S, Yu HK. Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire. Coatings. 2017; 7(12):218. https://doi.org/10.3390/coatings7120218
Chicago/Turabian StyleLee, Jaeyeong, Shinyoung Lee, and Hak Ki Yu. 2017. "Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire" Coatings 7, no. 12: 218. https://doi.org/10.3390/coatings7120218
APA StyleLee, J., Lee, S., & Yu, H. K. (2017). Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire. Coatings, 7(12), 218. https://doi.org/10.3390/coatings7120218